Total IP Solution for Mobile Storage
UFS & NAND Controllers

Yuping Chung
Arasan Chip Systems
San Jose, CA

Mobile Forum Taiwan & Korea 2012
Fast Growing NAND Storage Markets

Source: Gartner

CAGR (2012 – 2014)
Mobile Storage Keeps Growing

Global eMMC Memory Shipment Forecast (Millions)

Source: IHS iSuppli Research June 2011

Taiwan & Korea 8/2012
MIPI Adoption Driven by Smart Mobile

MIPI – Mobile Industry Processor Interface Alliance; The standard body defining M-PHY & UniPro adopted by JEDEC UFS
UFS Integrated with MIPI protocols
Using same M-PHY and UniPro® specs
Why UFS?

- JEDEC standard (JES220)
- Leverage and **Reuse** Existing Standards
 - MIPI Architecture – UniPro, M-PHY
 - SCSI Command Sets
- Serial Interface Rx / Tx - SoC **Lower Pin Count**
- **High Bandwidth** Migration Path for eMMC - 1.5/3/6 Gbps
- **Lower Power** for Mobile Applications
Mobile SoC Support Multiple Storage Interfaces and Backward Compatibility

SD
- SD 1.0
- SD 1.1 High speed
- SD 2.0 High capacity
- SDIO 1.0
- SDIO 2.0 50Mhz
- SDIO 3.0 UHS-I
- SDIO 3.0 UHS-I
- SDIO 4.0 UHS II 1.56Gbps

eMMC / UFS
- MMC 4.1 High speed
- MMC 4.2 High Capacity
- eMMC 4.3 Boot-up
- eMMC 4.41 DDR
- eMMC 4.5 HS200 200MB/s
- UFS 1.1 3Gbps

USB
- USB 1.0 12 Mbps
- USB 2.0 480 Mbps
- USB 3.0 5 Gbps

NAND
- ONFi 1.0 50 MB/s
- ONFi 2.x 150 MB/s DDR
- ONFi 3.0 400MB/s DDR

Timeline:
- 1994
- 2000
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011
- 2012
1. **Complexity of Integration**
 a) Physical Layer Analog Interface
 b) Controller Digital Design
 c) Controller Firmware and OS Software Drivers
 d) OS File Systems & Stacks

2. **Compliance**
 - Meet specifications

3. **Compatibility**
 - Comprehensive Interoperability

Total Solution Supporting Mobile Storage

JEDEC

Global Standards for the Microelectronics Industry
UFS Mobile Storage Implementation

UFS Host

ARM Core

AMBA Interface

AXI, AHB, etc

Controller IP Core

M-PHY

HCI

UFS Device

Controller IP Core

M-PHY

Ax, AHB, etc

NAND

Reset

Ref Clock

Dout+/- Din+/-

Din+/- Dout+/-
Layered Architecture

- UFS-SCSI Command Set Layer (UCS)
- UFS Transport Protocol Layer (UTP)
- UFS InterConnect Layer (UIC)
- UniPro
- M-PHY

L4 = Transport
L3 = Network
L2 = Data Link
L1.5 = PHY adapt
L1 = M-PHY

UFS Controller IP Core
UFS M-PHY
UniPro® Ensures Data Integrity

Application Data - Message

L4 – Segment

Header

L3 – Packet

Dest. CPort

Dest. Device

L2 – Frame

Data

17b symbol

L1.5 – symbol

17b symbol

L1 – symbol

8b10b symbol

Tx / Rx Pair

Global Standards for the Microelectronics Industry
UFS Controller with Certified UniPro®
M-PHY Type 1 Key Features for UFS (con’t)

- HS Gear 1, 2, 3
- LS PWM Gear 0-7
- Configurable up to 4 lanes
- Ref clock - 19.2 / 26 / 38.4 / 52 MHz

<table>
<thead>
<tr>
<th>Gear</th>
<th>Rate A Mbps</th>
<th>Rate B Mbps</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
<td>Mandatory</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>Optional</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5.8</td>
<td>Optional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gear</th>
<th>Bit Rate Mbps</th>
<th>Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>below Gear 1</td>
<td>not supported</td>
</tr>
<tr>
<td>1</td>
<td>3 to 9</td>
<td>Mandatory</td>
</tr>
<tr>
<td>2</td>
<td>6 to 18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12 to 36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24 to 72</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48 to 144</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>96 to 288</td>
<td>Optional</td>
</tr>
<tr>
<td>7</td>
<td>192 to 576</td>
<td></td>
</tr>
</tbody>
</table>

Taiwan & Korea 8/2012
M-PHY Type 1 Key Features for UFS

• Differential Serial Interfaces
 – Type 1 M-PHY
 • High Speed NRZ Signaling
 • Low Speed PWM Signaling
 – Up to 4 Lanes

• Power Savings

<table>
<thead>
<tr>
<th>Power States</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stall</td>
<td>HS-Mode power saving state; Allows fast recovery time</td>
</tr>
<tr>
<td>Sleep</td>
<td>LS-Mode power saving state;</td>
</tr>
<tr>
<td>Hibern8</td>
<td>Ultra Low Power State; Configuration still intact</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled by Reset; Configuration reset to default</td>
</tr>
<tr>
<td>Unpowered</td>
<td>Power Supply Removed</td>
</tr>
</tbody>
</table>
M-PHY for UFS Implementation

- **1** Synchronization
- **2** Type-1: HS & LS Mode
- **3** Power Saving
- **4** Data Integrity
- **5** Coding for NRZ & PWM
High Performance NAND for UFS Device
NAND Flash Interface Evolution

<table>
<thead>
<tr>
<th></th>
<th>JEDEC</th>
<th>Proprietary</th>
<th>JEDEC/ONFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy SDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinout</td>
<td>WE#</td>
<td>RE#</td>
<td>CK</td>
</tr>
<tr>
<td></td>
<td>DQ</td>
<td></td>
<td>DQ</td>
</tr>
<tr>
<td>Toggle-mode DDR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writes</td>
<td>WE#</td>
<td>RE#</td>
<td>CK</td>
</tr>
<tr>
<td></td>
<td>DQS</td>
<td></td>
<td>W/R#</td>
</tr>
<tr>
<td></td>
<td>Din</td>
<td></td>
<td>DQ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DQS</td>
</tr>
<tr>
<td>Reads</td>
<td>RE#</td>
<td>DQS</td>
<td>CK</td>
</tr>
<tr>
<td></td>
<td>Dout</td>
<td></td>
<td>W/R#</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DQS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DQ</td>
</tr>
</tbody>
</table>

Source: JEDEC 2010
ONFI Interface 2.x, 3.0

<table>
<thead>
<tr>
<th>Feature</th>
<th>ONFI 2.0 SDR</th>
<th>ONFI 2.3 NV-DDR</th>
<th>ONFI 3.0 NV-DDR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed</td>
<td>Mode 5 (20ns)</td>
<td>200 MT/s (100Mhz)</td>
<td>400 MT/s (200Mhz)</td>
</tr>
<tr>
<td>CE_n Pin Reduction</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Volume Addressing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>On-die termination (ODT)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Differential Signaling</td>
<td>No</td>
<td>No</td>
<td>Yes, optional for DQS and/or RE_n</td>
</tr>
<tr>
<td>I/O VccQ</td>
<td>3.3V / 1.8V</td>
<td>3.3V / 1.8V</td>
<td>1.8V</td>
</tr>
<tr>
<td>External VREFQ</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Versatile NAND Flash Controller IP

NAND Controller IP includes:
- ONFI NV-DDR2 PHY, Toggle DDR 1/2, Legacy SDR
- ECC engine
- ARM interface – AMBA (AXI, AHB)
Challenge of Designing for 400MT/s

Process, Voltage, and Temperature (PVT) lead to clock misalignment.

A synthesized solution cannot meet the 2.5ns DDR data period.

A hard IP DLL or Delay Circuit is required to ensure the clock edge is aligned to the center of data for correct sampling.

Clock misaligned due to PVT variations.
Optimized ONFI 3.0 PHY

1. DLL Circuit
 - More accurate than typical delay circuit
 - Allows designer to align and optimize for data sampling;
 - Smaller die size and lower power consumption

2. 2X clock into Tx generates more accurate sampling clock

3. ONFI 3.0 compliant I/O pad
 - 1.8v / 3.3v dual voltage (not a typical DDR pad)
Dynamically Configurable ECC Engine

1. Modular design expandable to 32-bit or more ECC capability
2. Match different ECC requirements for different NAND ICs

High Performance:
Parallel bit processing on BCH encoder

BCH Decoder:
Inversion-less Berlekamp-Massey algorithm for Key Equation Solver
Parallel computation for Key Equation Solver using parallel Chien search algorithm

Low Latency:
Parallel syndrome generation on BCH decoder
UFS / NAND Total IP Solution

Companion Software Stacks

Certified Digital IP Core

InterOperable Analog PHY

IP & Software Validation Platform

UFS Host & Device

UFS-SCSI Command Set Layer (UCS)

UFS Transport Protocol Layer (UTP)

UniPro

L4 = Transport

L3 = Network

L2 = Data Link

L1.5 = Phy adapt

L1 = M-PHY

Taiwan & Korea 8/2012

Global Standards for the Microelectronics Industry
Yuping Chung
yuping.chung@arasan.com

Arasan Chip Systems
San Jose, CA

THANK YOU