Server Memory Trends (Past and Future)

Server Memory Forum 2011
Memory Requirement for Server Application

- High End - DB server
- Mid End - Application server
- Front End - Web server

HPC/ MC
- In-Memory System
- TeraByte System
- Large Capacity

Conventional
- Virtualization & Consolidation
- Moderate Capacity / Low TCO
- High Bandwidth / Scalability

Cloud computing - Low End
- Small Form-Factor
- ECC SODIMM / MiniDIMM
- Scalability / Low Power

Memory requirements are getting more diversifying, so important to figure out the right solution for each segment together.

JEDEC
Global Standards for the Microelectronics Industry
Clouding Impact on GB/ system Forecast

- Clouding, requires More Memory in Server / Slowing Down of Density in PC but may increase # of systems

Driving Factor Cloud computing

High Density Requirement of Server Memory will increase

[Source: DQ 1Q'11]
Ever Green Memory Solution for Server

- Samsung keeps the same total power budget even though GB/system keeps growing.
 - Technical evolution: TSV, DDR4, Process migration, Low-voltage etc.
Server Memory Evolution Path: Type

- ECC UDIMM (Unbuffered DiMM)
- RDIMM (Registered DiMM)
- FBDIMM & LRDIMM (Load Reduced DiMM)

Cost / Density / Reliability / Speed

JEDEC
Global Standards for the Microelectronics Industry
Server Memory Evolution Path: SI

Low Frequency Module

SDR DRAM Module

33MHz clock

100MHz clock

100MHz clock

200MHz clock
Server Memory Evolution Path: SI - Cont’

- DDR2-400
- DDR2-800
- DDR3-800
- DDR3-1600

DDR4 Adopts Fly-by
Server Memory Evolution Path: SI - Cont'

Diagram:

- **DDR1**
 - Z₀ = 60 ohm
 - 22 ohm
 - Z₀ = 50~60 ohm
 - 15~25 ohm

- **DDR2/3 or 4**
 - Z₀ = <60 ohm
 - 15~22 ohm
 - Z₀ = 40~50 ohm

Table:

<table>
<thead>
<tr>
<th></th>
<th>DDR1</th>
<th>DDR2</th>
<th>DDR3</th>
<th>DDR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>2.5V</td>
<td>1.8V</td>
<td>1.5V</td>
<td>1.2V</td>
</tr>
<tr>
<td>Slot #</td>
<td>4-Slot</td>
<td>2-Slot</td>
<td>2-Slot</td>
<td>2-Slot</td>
</tr>
<tr>
<td>Cio</td>
<td>~ 5pF</td>
<td>~ 3pF</td>
<td>~ 2pF</td>
<td>~1.xpF</td>
</tr>
<tr>
<td>Threshold (AC/DC)</td>
<td>310/150</td>
<td>250(200)/125</td>
<td>175(150)/100</td>
<td>TBD</td>
</tr>
<tr>
<td>Termination</td>
<td>MBT</td>
<td>ODT</td>
<td>2 ODTs</td>
<td>3 ODTs</td>
</tr>
<tr>
<td>DRAM ODT</td>
<td>N/A</td>
<td>150/75/50</td>
<td>120/60/40/30/20*</td>
<td>TBD</td>
</tr>
<tr>
<td>MCH ODT</td>
<td>Optional</td>
<td>Support</td>
<td>Support</td>
<td>Support</td>
</tr>
</tbody>
</table>

- Speed ↑
- Voltage ↓
- # of Slot ↓
- Cio ↓
- Threshold ↓
- ODT ↓

Dynamic ODT support
DDR4: Server Oriented Solution

- DDR4 is the first device which adopts proposals from “Server Union”

<table>
<thead>
<tr>
<th>Category</th>
<th>DDR4 Features</th>
<th>DDR3 Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>DDR4: Max 24Ranks/ch</td>
<td>DDR3: Max 8Ranks/ch</td>
</tr>
<tr>
<td>Power</td>
<td>DDR4: POD (-40% IO Power), 0.5KB page (-10% core power), 3DS (-25% Overall Power)</td>
<td>DDR3: 3DS</td>
</tr>
<tr>
<td>Reliability</td>
<td>DDR4: CRC/CA Parity/MPR,MRS Readout</td>
<td>DDR3: -</td>
</tr>
<tr>
<td>Performance</td>
<td>DDR4: Fine Granularity Refresh, Temp controlled Refresh</td>
<td>DDR3: -</td>
</tr>
</tbody>
</table>
DDR4: Server Oriented Solution – Cont'

Power

[Samsung calculation @ Same process node]

Capacity/Performance

[1DIMM/ch]

[2DIMM/ch]

[3DIMM/ch]

JEDEC
Global Standards for the Microelectronics Industry
DDR4 : Server Memory for 2013

- DDR4 cannot be delayed for Server Memory Differentiation

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>40nm</td>
<td>30nm</td>
<td>20nm</td>
<td>20’nm</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>32GB RDIMM 16GB RDIMM @ 2DPC</td>
<td>32GB LRDIMM 16GB LRDIMM @ 3DPC</td>
<td>←</td>
<td>32GB RDIMM 16GB RDIMM @ 3DPC</td>
<td>←</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1066Mbps</td>
<td>1600Mbps</td>
<td>1866Mbps</td>
<td>←</td>
<td>2133/ 2400Mbps</td>
</tr>
<tr>
<td>Power</td>
<td>1.35V</td>
<td>1.25V</td>
<td>←</td>
<td>1.2V</td>
<td></td>
</tr>
</tbody>
</table>

DDR3L **DDR3U LRDIMM** **DDR3-1866 (TSV)** **DDR4**

JEDEC Global Standards for the Microelectronics Industry
DDR4 is On Track

- Samsung verified DDR4 interface @ Jan’11
- Working Sample compatible to the latest JEDEC spec is successfully under evaluation
- DI MMM Characteristics (@ATE, 1DI MM/ ch)

<table>
<thead>
<tr>
<th>Max Freq. ~3.33Gbps</th>
<th>Sufficient Data Rx Eye @ 2.6Gb/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD 500ps 750ps 1000ps 1250ps 1500ps</td>
<td></td>
</tr>
<tr>
<td>1.50V</td>
<td>***</td>
</tr>
<tr>
<td>1.45V</td>
<td>***</td>
</tr>
<tr>
<td>1.40V</td>
<td>***</td>
</tr>
<tr>
<td>1.35V</td>
<td>***</td>
</tr>
<tr>
<td>1.30V</td>
<td>***</td>
</tr>
<tr>
<td>1.25V</td>
<td>***</td>
</tr>
<tr>
<td>1.20V</td>
<td>***</td>
</tr>
<tr>
<td>1.15V</td>
<td>***</td>
</tr>
<tr>
<td>1.10V</td>
<td>***</td>
</tr>
<tr>
<td>1.05V</td>
<td>***</td>
</tr>
<tr>
<td>1.00V</td>
<td>***</td>
</tr>
</tbody>
</table>

Data Rate 3.33Gb/s at VDD=1.1V
DDR3 vs DDR4 Module

Changes

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
<th>DDR3</th>
<th>DDR4</th>
<th>Change</th>
<th>Objectives</th>
<th>Note*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIMM Pin Count (Pin Pitch)</td>
<td>240 pin (1.0 mm)</td>
<td>284 pin (0.85 mm)</td>
<td>+ 44 pins (- 0.15 mm)</td>
<td>SI (XTK) S/G ratio ↑</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>204 pin (0.6 mm)</td>
<td>256 pin (0.5 mm)</td>
<td>+ 52 pins (- 0.1 mm)</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>PCB Bottom Edge</td>
<td>Flat</td>
<td>Step & Ramp</td>
<td>Step</td>
<td>Insertion force ↓</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>3</td>
<td>DIMM Width</td>
<td>67.6 mm</td>
<td>68.6 mm</td>
<td>+ 1.0 mm</td>
<td>Number of pin ↑</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>DIMM Height</td>
<td>30.35 mm</td>
<td>31.25 mm</td>
<td>+ 0.9 mm</td>
<td>DIMM routing ↑</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>5</td>
<td>DIMM Thickness</td>
<td>1.0 mm</td>
<td>1.2 mm</td>
<td>+ 0.2 mm</td>
<td>Number of layers ↑</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Data Buffer</td>
<td>1 Buffer</td>
<td>9 Buffers</td>
<td>+ 8 Buffers</td>
<td>SI (Stub)</td>
<td>1</td>
</tr>
</tbody>
</table>

No change
- DRAM Ball Count (78/ 96 balls) & Ball Pitch (0.8 mm)
- DIMM Topology (Fly-by CA)

* Note
1. LRDIMM
2. RDIMM
3. UDIMM
4. SO-DIMM

[JEDEC Logo]

Global Standards for the Microelectronics Industry
TSV: Another Hook for DDR4 Server Solution

- Can achieve High Performance & Low Power & High Density
 - More stacking → High Density with less electronic loss
 - Master-Slave enables High performance/Low Power

- High Cost is the Challenge to overcome
 - Key bottleneck: Thin wafer/die handling, Drilling/Filling/Align

JEDEC
Global Standards for the Microelectronics Industry
TSV: Another Hook for DDR4 Server Solution

- 2H-TSV has been verified in several Modules in DDR3
- Confirmed 3DS Architecture & Power Saving & Performance Increase in Actual System level
- DDR4 supports 3 Chip ID which enables Max 8H-stack
 - 2H-TSV will be real Soon but 4H will need more patient for production within reasonable cost

>30% Power Save over LRDIMM @ 2DPC

Global Standards for the Microelectronics Industry
DDR4 Micro-server Solution

• Current : Various Small Form Factor Solution in DDR3

<table>
<thead>
<tr>
<th>MDL type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC SODI MM</td>
<td>67.8x30 2028mm²</td>
</tr>
<tr>
<td>VLP ECC UDIMM</td>
<td>133.35x18.75 2500mm²</td>
</tr>
<tr>
<td>Mini DIMM</td>
<td>82x17.9 1469mm²</td>
</tr>
</tbody>
</table>

• DDR4 : ECC SoDI MM might be the most feasible one
 • VLP/ Mini DI MM may face Routing/ SI issue in DDR4 speed (More CA, VPP)
 • ECC SoDI MM will be more popular than DDR3
Summary & Call For Action

• Server, Ever Hungry for High Density with Low Power
 – DDR4, Adopted VOC of Server from Spec definition

• Server, Need DDR4 from 2013 for Memory Differentiation
 – Cannot be delayed to keep Server GB/sys with same power budget

• TSV in Server will become real with 2H-TSV/DDR4
 – Industry may need more patient for 4H-TSV
THANK YOU!