Migrating to LPDDR3:

An overview of LPDDR3 commands, operations, and functions.

LPDDR3 Symposium 2012
Contents

• LPDDR2 to LPDDR3 migration
• LPDDR3 Commands: highlights
• LPDDR3 Operations: highlights
• LPDDR3 AC Timing and Signaling
LPDDR3 Objective

- **Increase bandwidth 50% LPDDR2-1066**
 - From 8.5 GB/s\(^1\) to 12.8 GB/sec\(^1\)

- **Fast time-to-market**
 - Re-use existing LPDDR2 infrastructure
 - No change or limited changes to interface, command protocol, state machine, etc.
 - Only changes which enable the higher speed operation should be considered.
 - SOC vendors and DRAM vendors should re-use as much as possible from LPDDR2 in order to meet very aggressive time-to-market.

1. 2-channels
LPDDR3: Key Features Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>LPDDR2-S4</th>
<th>LPDDR3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface/Bond Pads</td>
<td>LPDDR2</td>
<td>Same w/additional ODT pin</td>
</tr>
<tr>
<td>Command Protocol</td>
<td>LPDDR2</td>
<td>Same</td>
</tr>
<tr>
<td>Array Pre-Fetch</td>
<td>4n</td>
<td>8n</td>
</tr>
<tr>
<td>Speed Bins</td>
<td>533,400,333,266,200</td>
<td>800,667</td>
</tr>
<tr>
<td>Read/Write Latencies</td>
<td>8/4,6/3,5/2,4/2,3/1</td>
<td>12/6,10/6 or optional WL=9</td>
</tr>
<tr>
<td>Memory Densities</td>
<td>64Mb – 8Gb</td>
<td>4Gb/6Gb/8Gb (16/32Gb TBD)</td>
</tr>
<tr>
<td>Burst Lengths</td>
<td>4,8,16</td>
<td>8 only!</td>
</tr>
<tr>
<td>Burst Sequence</td>
<td>Sequential, Interleaved</td>
<td>Sequential only!</td>
</tr>
<tr>
<td>Drive Strength</td>
<td>34,40,48,60,80,120</td>
<td>34,40,48 + asym options</td>
</tr>
<tr>
<td>ODT</td>
<td>Not supported</td>
<td>Added!</td>
</tr>
<tr>
<td>Low Power Features (PASR, TCSR, DPD, etc.)</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>
LPDDR3: Addressing

- Overlap between LPDDR2/3 at 4-8Gb.
 - Same addressing for maximum IP re-use from LPDDR2
- Additional 16Gb & 32Gb definitions
 - 32Gb TBD – feasibility still to be determined.
 - 16Gb addressing defined, but refresh requirements still TBD.

Table 3 — LPDDR3 SDRAM Addressing

<table>
<thead>
<tr>
<th>Items</th>
<th>4Gb</th>
<th>6Gb</th>
<th>8Gb</th>
<th>16Gb</th>
<th>32Gb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Banks</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>TBD</td>
</tr>
<tr>
<td>Bank Addresses</td>
<td>BA0-BA2</td>
<td>BA0-BA2</td>
<td>BA0-BA2</td>
<td>BA0-BA2</td>
<td>TBD</td>
</tr>
<tr>
<td>(t_{REFI}(\text{us})^2)</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>3.9</td>
<td>TBD</td>
</tr>
<tr>
<td>x16 Row Addresses</td>
<td>R0-R13</td>
<td>R0-R14(^4)</td>
<td>R0-R14</td>
<td>R0-R14</td>
<td>TBD</td>
</tr>
<tr>
<td>Column Addresses(^1)</td>
<td>C0-C10</td>
<td>C0-C10</td>
<td>C0-C10</td>
<td>C0-C11</td>
<td>TBD</td>
</tr>
<tr>
<td>x32 Row Addresses</td>
<td>R0-R13</td>
<td>R0-R14(^4)</td>
<td>R0-R14</td>
<td>R0-R14</td>
<td>TBD</td>
</tr>
<tr>
<td>Column Addresses(^1)</td>
<td>C0-C9</td>
<td>C0-C9</td>
<td>C0-C9</td>
<td>C0-C10</td>
<td>TBD</td>
</tr>
</tbody>
</table>

\(^{1}\) Only relevant for x32 address.
LPDDR3: Performance

Peak Throughput for Mobile Platforms
(GB/s)

2010 2011 2012 2013 2014 2015

LPDDR2
LPDDR3
WideIO
WideIO-2
LPDDR4

2X 4X

Global Standards for the Microelectronics Industry
LPDDR3: Performance

• 1333/1600 speed bins
 – $8n$ array pre-fetch to support higher t_{CK}
 – Min Burst Length 8 supported
 – RL/WL/nWR support for each new speed bin
 • Note WL “set B” support
 • Additional RL/WL settings allow for frequency scaling to intermediate speeds with optimized latency settings. Use next higher speed bin timing specs.

• Future support for higher speeds (266MHz DRAM core)
 – LPDDR3e speed extensions under discussion, to support 1866/2133 Mbps (target).
LPDDR3: Power

- LPDDR2 -> LPDDR3: no change in V_{DD}
- Larger pre-fetch, higher R/W power
- Faster tCK: higher IO power

Low-Power DRAM?

- Power efficiency (pJ/bit) improvement with higher performance – performance increase out-gains power increase...
 - 2-ch LPDDR2 delivers 8.3GB/sec at 533MHz, approx 11.9pJ/bit
 - 2-ch LPDDR3 delivers 12.8GB/sec at 800MHz, approx 9.2pJ/bit

- Higher performance also allows for faster data transfer of fixed quantity resulting in longer idle time for additional power savings.
LPDDR3: Low Power Features

- TCSR – same feature as LPDDR2
- PASR – same as LPDDR2 (identical bank & segment masking as S4)
- DPD – supported
- Power-down mode
- Self-refresh mode
- New requirements:
 - t_{CPDED} required for PD/SREF/DPD entry
 - t_{MRRI} required upon PD exit
 - Ensures output buffers do not have worst-case scenario after power-down exit.

Controller backward compatibility to new specs ensured.
LPDDR3: Low Power Mode

Changes

- t_{CPDED}

- t_{MRRI}
LPDDR3: Power Management

- Higher clock speed means higher power, potential thermal concern (esp. PoP).
- Power management features and methods may be employed
 - Expect that LPDDR3 may operate in elevated temperature range (+85°C to +105°C).
 - MR4 die temp sensor polling enables operation in elevated temp region with refresh de-rating.
 - Per-bank refresh enables user to run in extended temp range without performance degradation.
 - 17% performance hit when running all-bank refresh at 4x t_{REFI} elevated temperature refresh requirement.
 - Concurrent bank R/W operations with per-bank refresh allows data bus to remain active. (Watch command bus activity though!)
LPDDR3: Power Management (continued)

- Clock frequency scaling
 - Utilize alternate RL/WL settings for optimization at a given scaled frequency.
 - Optional RL3 setting (see MR0) for <166MHz enables efficient low-frequency operation.

- High speed operation allows for shorter time to transfer a fixed amount of data – utilize power-down between data transfer for average power reduction.

- Termination will consume power. Optimize ODT and OBT based on SI analysis
 - Multi-rank power control must consider ODT pin connections. Rank0 cannot provide termination for Rank1 if in SREF mode.
Contents

- LPDDR2 to LPDDR3 migration
- **LPDDR3 Commands: highlights**
- **LPDDR3 Operations: highlights**
- LPDDR3 AC Timing and Signaling
LPDDR3: Command TT

- With need to support only BL8, no longer support truncated bursts.
 - No BST command
 - WIW/RIR forbidden

5.5.1 Writes interrupted by a write (cont’d)

Figure 49 — LPDDR2-SX: Write burst interrupt timing: WL = 1, BL = 8, t_{CCD} = 2
Contents

• LPDDR2 to LPDDR3 migration
• LPDDR3 Commands: highlights
• LPDDR3 Operations: highlights
• LPDDR3 AC Timing and Signaling
LPDDR3 Operations: Initialization

• Power Ramp / Initialization Updates
 – Changes to enable boot at-speed prior to CA Training (when required).
 • Boot at-speed may not be possible if CA bus requires training.
 • Insertion of CA training period.
 • Boot at reduced t_{CKb} still supported.
LPDDR3 Operations: Initialization

CA training should be performed prior to ZQ Cal; not required if low-speed boot

MRR not used when booting at-speed
(DQ calibration, CA training not yet performed)
LPDDR3 Operations: MR0

- MR0
 - support for WL setB
 - Similar to additive latency concept in DDR3/DDR4.
 - Optional settings with alternate RL/WL ratios for scheduling optimization in different controllers.
 - RL3 support option
 - Low speed operation
LPDDR3 Operations: MR1

- MR1 nWR/BL
 - Sequential burst support only – subset of LPDDR2 read burst sequence options.

- nWR support expanded using additional nWRE bit from MR2[4] to allow higher speed operation and support asynchronous t_{WR} timing requirement.

<table>
<thead>
<tr>
<th>C2</th>
<th>C1</th>
<th>C0</th>
<th>BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0B</td>
<td>0B</td>
<td>0B</td>
<td>0B</td>
</tr>
<tr>
<td>0B</td>
<td>1B</td>
<td>0B</td>
<td>0B</td>
</tr>
<tr>
<td>1B</td>
<td>0B</td>
<td>0B</td>
<td>0B</td>
</tr>
<tr>
<td>1B</td>
<td>1B</td>
<td>0B</td>
<td>0B</td>
</tr>
</tbody>
</table>

Table 9 — Burst Sequence

<table>
<thead>
<tr>
<th>Burst Cycle Number and Burst Address Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>
LPDDR3 Operations: MR2

- **MR2**
 - Write Lev
 - WL set B
 - RL/WL
 - Support for various clock settings, but not all speed bins defined in AC timing.
 - Use of intermediate RL/WL settings require next higher speed bin timing requirements.
 - RL3 support is optional.
LPDDR3: Operations – MR3

- Asymmetric drive strength settings for data-eye optimization.
 - Asymmetric rise/fall slew rates will cut into data-eye width.
 - Margin can be regained using independent control of output drive and resulting slew rates.
 - May improve aperture width, common mode power noise, DQS jitter.

MR3 I/O Configuration 1 (MA<7:0> = 03h):

<table>
<thead>
<tr>
<th>OP7</th>
<th>OP6</th>
<th>OP5</th>
<th>OP4</th>
<th>OP3</th>
<th>OP2</th>
<th>OP1</th>
<th>OP0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(RFU)</td>
<td>DS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- DS: Write-only, OP<3:0>
 - 0001B: 34.3Ω typical pull-down/pull-up
 - 0010B: 40Ω typical pull-down/pull-up (default)
 - 0011B: 48Ω typical pull-down/pull-up
 - 0100B: reserved for 60Ω typical pull-down/pull-up
 - 0110B: reserved for 80Ω typical pull-down/pull-up
 - 1001B: 34.3Ω typical pull-down, 40Ω typical pull-up
 - 1010B: 40Ω typical pull-down, 48Ω typical pull-up
 - 1011B: 34.3Ω typical pull-down, 48Ω typical pull-up
 - All others: reserved
LPDDR3 Operations: MR4

- MR4 temp sensor output additional output setting

<table>
<thead>
<tr>
<th>MR4 Device Temperature (MA<7:0> = 04H)</th>
<th>OP7</th>
<th>OP6</th>
<th>OP5</th>
<th>OP4</th>
<th>OP3</th>
<th>OP2</th>
<th>OP1</th>
<th>OP0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUF</td>
<td>(RFU)</td>
<td>SDRAM Refresh Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDRAM Refresh Rate</td>
<td>Read-only</td>
<td>OP<2:0></td>
<td>00H: SDRAM Low temperature operating limit exceeded</td>
<td>001H: 4x tREFL, 4x tREFLb, 4x tREFW</td>
<td>010H: 2x tREFL, 2x tREFLb, 2x tREFW</td>
<td>011H: 1x tREFL, 1x tREFLb, 1x tREFW (<=55°C)</td>
<td>100H: 0.5x tREFL, 0.5x tREFLb, 0.5x tREFW, do not de-rate SDRAM AC timing</td>
<td>101H: 0.25x tREFL, 0.25x tREFLb, 0.25x tREFW, do not de-rate SDRAM AC timing</td>
</tr>
<tr>
<td>Temperature Update Flag</td>
<td>Read-only</td>
<td>OP<7></td>
<td>00: OP<2:0> value has not changed since last read of MR4.</td>
<td>10: OP<2:0> value has changed since last read of MR4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LPDDR3 Operations: WRITE

- Write Preamble changed from low-only to toggle (DDR3-like)
 - With DQ termination DQS_t/DQS_c are pulled high prior to a data input operation, making it difficult to detect a DQS transition.
 - Toggle preamble allows better detection of DQS crossover.

[Diagram showing data input (write) timing]

Figure 41 — Data input (write) timing

Figure 15 — Data input (write) timing
LPDDR3 Operations: READ

- LPDDR3 Data Valid Window (DVW) definition has changed from LPDDR2 definition
 - Alignment with DDR3 definition
 - DVW = tQH - tDQSQ
 - For LPDDR2: \(t_{QSH_{\text{min}}} / t_{QSL_{\text{min}}} - t_{QHS_{\text{max}}} - t_{DQSQ} \)
 - DVW Calculation
 \[
 \begin{align*}
 t_{\text{CKavg}} &= 1250\text{ps} \\
 t_{\text{CH(abs)min}} &= 0.43 \times t_{\text{CKavg}} = 537.5\text{ps} \\
 t_{\text{QSH}_{\text{min}}} &= t_{\text{CH(abs)min}} - 0.05 \times t_{\text{CKavg}} = 475\text{ps} \\
 t_{\text{DQSQ}} &= 135\text{ps} \\
 \text{DVW} &= 340\text{ps} \\
 \text{UI} &= 0.5 \times t_{\text{CKavg}} = 625\text{ps} \\
 \%\text{UI} &= 54.4\%
 \end{align*}
 \]

Duty cycle distortion already accounted for in tQSH/tQSL;
Contents

- LPDDR2 to LPDDR3 migration
- LPDDR3 Commands: highlights
- LPDDR3 Operations: highlights
- LPDDR3 AC Timing and Signaling
LPDDR3: AC Timing

• Key spec changes
 – 1600/1333 speed bins
 • tCK = 1.25ns/1.5ns
 • Other tCK require use of next highest speed bins
 – Input setup/hold
 • 150ps/175ps
 – Potential for LPDDR3E?
 • 1866/2133 speed bins
 • Setup/hold timing budget very challenging.
LPDDR3: System Design, Pin Cap

- Pin cap reduction from LPDDR2 to LPDDR3 to allow higher speed operation
 - CCK: 2.0 -> 1.4pF
 - CI: 2.0 -> 1.3pF
 - CIO 2.5 -> 1.8pF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min/Max</th>
<th>Value</th>
<th>Units</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input capacitance, CK_t and CK_c</td>
<td>C_{CK}</td>
<td>Min</td>
<td>0.7</td>
<td>pF</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>1.4</td>
<td>pF</td>
<td>1.2</td>
</tr>
<tr>
<td>Input capacitance delta, CK_t and CK_c</td>
<td>C_{DCK}</td>
<td>Min</td>
<td>0</td>
<td>pF</td>
<td>1.2,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>0.15</td>
<td>pF</td>
<td>1.2,3</td>
</tr>
<tr>
<td>Input capacitance, all other input-only pins</td>
<td>C_I</td>
<td>Min</td>
<td>0.7</td>
<td>pF</td>
<td>1.2,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>1.3</td>
<td>pF</td>
<td>1.2,4</td>
</tr>
<tr>
<td>Input capacitance delta, all other input-only pins</td>
<td>C_{DI}</td>
<td>Min</td>
<td>-0.20</td>
<td>pF</td>
<td>1.2,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>0.20</td>
<td>pF</td>
<td>1.2,5</td>
</tr>
<tr>
<td>Input/output capacitance, DQ, DM, DQS_t, DQS_c</td>
<td>C_{IO}</td>
<td>Min</td>
<td>1.0</td>
<td>pF</td>
<td>1.2,6,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>1.8</td>
<td>pF</td>
<td>1.2,6,7</td>
</tr>
<tr>
<td>Input/output capacitance delta, DQS_t, DQS_c</td>
<td>C_{DDQS}</td>
<td>Min</td>
<td>0</td>
<td>pF</td>
<td>1.2,7,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>0.2</td>
<td>pF</td>
<td>1.2,7,8</td>
</tr>
<tr>
<td>Input/output capacitance delta, DQ, DM</td>
<td>C_{DIO}</td>
<td>Min</td>
<td>-0.25</td>
<td>pF</td>
<td>1.2,7,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>0.25</td>
<td>pF</td>
<td>1.2,7,9</td>
</tr>
<tr>
<td>Input/output capacitance ZQ Pin</td>
<td>C_{ZQ}</td>
<td>Min</td>
<td>0</td>
<td>pF</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max</td>
<td>2.0</td>
<td>pF</td>
<td>1.2</td>
</tr>
</tbody>
</table>
LPDDR3: System Design Considerations

- Signal integrity is significantly affected by these parameters:
 - CIO (capacitance)
 - Driver slew rate
 - Package design
 - Power delivery (key in PoP implementation)

- Great care must be taken to design a system that has good signal integrity at 1600 MT/s with this PHY.

- It is highly recommended to work with memory vendors to model your system using extracted driver and package parameters.

- Additional features can be employed to improve signal margin:
 - DQ On Die Termination (ODT)
 - Asym drive strength