LPDDR4 Moves Mobile

presented by:

Daniel Skinner

Mobile Forum 2013
LPDDR4 Architectural Approach

- LPDDR4 Priorities
 - Power neutrality
 - 2x BW performance
 - Low pin-count
 - Low cost
 - Backward compatibility
Power Neutrality

The Power Neutrality requirement is based on mobile platform constraints

- Battery capacity is (roughly) static
 - Days (standby) and hours (active) of battery life are required for an acceptable user experience
 - Batter form-factor is (roughly) fixed

- TDP for the platform is (roughly) static
 - No “oven mitt” platforms allowed!

Therefore, power from one generation to the next must be (roughly) static

- But, advancements in hardware require 2x the BW, generation to generation

Achieving power neutrality would be easy if voltage scaling of the transistors could keep pace, but they can’t

- Architectural solutions are required to close the gap
Mobile DRAM Power Requirements

- A great user experience requires great power efficiency
 - Tablets – 10 hours active with a 11.5 Ah battery
 - Phones – 8 hours active with a 1.4 Ah battery

- Active and Stand-by power are critical for mobile platforms

- Phones are targeting 10+ days of standby
- Tablets in “connected standby” targeting 2+ weeks
- Ultrabooks require “always on, always connected” power state, <5% battery drain within 16 hours
- Memory consumes up to 30% of the system power in standby modes
Mobile System Thermal Envelope

- Mobile handset platforms are limited to 4-5W total power
 - Heat spreaders are being used to move heat to the case, away from the memory/processor, but the final heat sink is the user

- Handset performance is “throttled” when thermal limits are reached
 - Reduce video fps
 - Reduce processor core clock speeds
 - Reduce screen backlight
 - All throttling solutions have a negative impact on user experience

- Heavily utilized memory bandwidth is a significant contributor to thermal response
 - Power consumption > 1W is possible in today’s mobile memory solutions (LPDDR3 & WIO)

- Mobile DRAM is spec’d for operation up to 105°C with 4x refresh
 - WIO and LP-PoP systems are pushing those limits during “normal” operation, exposing the memory to refresh failures

- Thermal management is both a system design and DRAM reliability issue
LPDDR4 Target: Power Neutrality

- LPDDR4 Key Features for Power Neutrality:
 - Refined architecture lowers the energy/bit:
 - 2ch x16 Architecture for lower IDD4R/W
 - 2KB page for lower IDD0
 - Low-swing rail-terminated driver for lower I/O energy/bit and better signal integrity
 - Low-frequency un-terminated operation supported
 - DBI(dc) for reduced I/O termination power
 - Retain existing low-power features from LPDDRn:
 - Low-latency clock stop/start and frequency change
 - Power-down and self-refresh modes
Low Power DRAM Bandwidth Roadmap

- **LPDDR2** (x64) BW target is 8.5 GB/s
 - Data rate up to 1066 Mbps DDR

- **LPDDR3** (x64) BW target is 17 GB/s
 - Evolutionary successor to LPDDR2
 - Data rate up to 2133 Mbps DDR

- **Wide I/O** (x512) BW target is 17 GB/s
 - Limited performance scalability (frequency-only)
 - Data rate up to 266 Mbps SDR

- **LPDDR4** (x64) BW target is 34 GB/s
 - Scalable performance
 - Data rate up to 4.126 Gbps DDR

- **WIO2** (x256) BW target is 34 GB/s
 - Scalable performance
 - Stacked-die configuration (x512) BW target is 68 GB/s
 - Data rate up to 1066 Mbps

Graphic Source: JEDEC, 2011
LPDDR4 Target: BW Performance

Key features for BW Performance

- 2-Channel x 8-bank architecture
 - More responders for higher scheduling efficiency
 - Lower average latency

- 32B pre-fetch per channel
 - Optimized MAL for fragmented data traffic

- High speed I/O, up to 4.267 Mbps
 - Targeting support for up to 2DQ or 4CA loads (system dependent)

- 6.4 GB/s to 8.5 GB/s bandwidth from each channel
 → Up to 17GB/s per die, 34GB/s for x64 system
Mobile DRAM Footprint Requirements

- The electronics in a handset are assembled on a double sided PWB and sandwiched between the battery and the screen, or sit beside the battery.
- DDP or QDP packages are required to meet the density requirements (1GB – 2GB today, 4GB – 8GB by 2016).
- <0.8mm total package height for memory is the technology target.
- PoP package used extensively for footprint reduction.
- “Custom” or “Semi-Custom” packages increase inventory risk and limit flexibility.
- BGA and PoP packages provide the most flexible low-cost solution.
 - **LPDDR4 goal: Retain BGA and PoP package capability.**

![iPhone-5 Electronics – 16.4 cm²](source: Techinsights, 2012)
LPDDR4 Target: Low Pin-Count

- Key features for Low Pin-Count:
 - Reduce CA bus to 6 pins
 - SDR-CA, 2-beat commands
 - 1066 Mbps max CA rate – same as LPDDR3e
 - Retain LPDDR3 clocking
 - Differential CK
 - Bi-directional differential DQS
LPDDR4 Target: Low Cost

Key features for Low Cost:

- Design re-use of LPDDRn architecture
 - LP-3 and LP-4 both use a 32B pre-fetch architecture

- Masked Write command provides flexibility for Mfg yield improvement

- Same back-end manufacturing flow as LPDDR3
 - ATE test and burn-in capability

- Re-use existing assembly/packaging technology
 - FGBA, PoP, MCP and eMCP packages

- System-level features for quality and reliability
 - Post-package repair to lower the quality (yield) costs
 - Targeted Row Refresh to lower the reliability (field failure) costs
LPDDR4 Target: Compatibility

- Many features and operations will remain compatible with LPDDR3, however...
 - VDD will be changed to lower power consumption
 - 1.1V nominal VDD2/VDDQ
 - CA encoding is new to lower pin-count
 - 6p SDR vs. 10p DDR (LPDDR3)
 - VSSQ-termination is new to enable high-BW with good signal integrity
 - Good data valid window with low-swing I/O
 - Better signal integrity (SSO, ISI, cross-talk)
 - Fully trained Data (WR) bus
 - Enables high data-rates on DQs, better energy/bit for terminated I/O

- Compromises to compatibility are being carefully weighed against the benefits
LPDDR4 Architecture

- 2-Channel x16 architecture
 - Lower power, lower latency
- 8 Banks per channel (16 per die)
- 2KB page size
- 16n (32B) data per column command
- BW target: 17GB/s per die
- Clocks centered in local clock-trees
 - DQS centered in byte lanes
 - CK centered in CA lanes

Conclusion: LPDDR4 is architected to meet the power, bandwidth, packaging, cost, and compatibility requirements of the world’s most advanced mobile systems

Smartphones ° Tablets ° Ultrabooks
THANK YOU