UFS v2.0 PHY and Protocol Testing for Compliance

Copyright © 2013 Chris Loberg, Tektronix
Agenda

• Introduction to MIPI® Architecture & Linkage to UFS
 – Compliance Testing “Ecosystem”

• UFS Testing Challenges

• Preparing for UFS Compliance Testing
 – Electrical, Interconnect & Protocol
 • Recommended Test Equipment

• Looking Ahead
M-PHY®
Flexible Architecture for High Data Rates/Minimal Power

- M-PHY is a high-speed serial PHY interface to
 - MIPI Alliance
 - JEDEC
 - USB-IF®
 - PCI-SIG®
Testing in the MIPI Alliance Ecosystem

<table>
<thead>
<tr>
<th>Conformance Testing</th>
<th>Compliance Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPI Alliance</td>
<td>UFSA</td>
</tr>
<tr>
<td>- DigRF™</td>
<td>- UFS v2.0</td>
</tr>
<tr>
<td>- CSI</td>
<td>USB-IF</td>
</tr>
<tr>
<td>- DSI</td>
<td>- USB3.0</td>
</tr>
<tr>
<td>- LLI</td>
<td>PCI-SIG</td>
</tr>
<tr>
<td></td>
<td>- Mobile Express</td>
</tr>
</tbody>
</table>
Serial Connections in UFS over M-PHY
UFS Testing Specification

<table>
<thead>
<tr>
<th>UFS</th>
<th>UniPro</th>
<th>MPHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1.1</td>
<td>1.41.00</td>
<td>2.0 (CTS 1.0)</td>
</tr>
<tr>
<td>Version 2.0</td>
<td>1.6.00</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Note: UniPro & MPHY documents are available only for MIPI Alliance Members for implementation/licensing
UFS Testing Challenges

- Higher data rate will increase importance of Signal Integrity of links
 - More emphasis on timing/jitter and noise (signal integrity)
 - Receiver testing will be needed to stress-test BER
- Changeable Gears, Terminations, Amplitudes
 - UFS default is PWM-G1
 - Sublinks can be PWM-G1 through PWM-G7 **OR** HS Gears

M-PHY Signal Characteristics

<table>
<thead>
<tr>
<th>Signaling mode</th>
<th>Data rates</th>
<th>Amplitudes</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gears</td>
<td>A (Gbps)</td>
<td>B (Gbps)</td>
</tr>
<tr>
<td>High Speed (HS)</td>
<td>G1</td>
<td>1.25</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>2.5</td>
<td>2.91</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>5</td>
<td>5.83</td>
</tr>
<tr>
<td>PWM (ie. TYPE-I)</td>
<td>G0</td>
<td>0.01</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>G1</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>G2</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>G3</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>G4</td>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>G5</td>
<td>48</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>G6</td>
<td>96</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>G7</td>
<td>192</td>
<td>576</td>
</tr>
<tr>
<td>SYS (ie. TYPE-II)</td>
<td></td>
<td>576 (Mb/s)</td>
<td></td>
</tr>
</tbody>
</table>
UFS Testing Challenges

- Interchangeable PWM and HS Gear Signaling Modes
 - Pulse width modulation for power-efficient low speed communications mode
 - “1” is 30/70 Pulse width
 - “0” is 70/30 Pulse width
 - Use of Ref Clock becomes optional
 - Good for HS gears, but not needed for PWM (self-clocked)
 - Test Challenge
 - Capture of PWM signaling dynamically with HS Gear Signaling
UFS Testing Challenges

Dynamic Signaling & Operation

- Multiple power modes
 - STALL/SLEEP: power saving states; mandatory
 - HIBERN8: enables ultra low power consumption
 - DISABLED: a Powered state where module operation is disabled by RESET
 - UNPOWERED: Power supply is withdrawn
- Dynamic nature makes protocol “capture” difficult
 - MPHYS PWM & HS Gears challenging for FPGA-based signal decoding
 - Dependent on oscilloscopes for protocol decoding
Preparing for UFS Compliance Testing

- Recommended Test Equipment
- PHY test approaches for Compliance & Debug
 - Tx/Rx & Interconnect
- Protocol analysis approaches
 - UniPro
Preparing For UFS Electrical Compliance

- Transmitter Testing
 - Oscilloscope for capture & verification of PWM and HS Gear Signaling
 - Dynamic acquisition state
 - Multiple channels (control/decoded protocol, HS gears, PWM gears)

- Signal Access
 - Probing
 - Differential SMA-based

<table>
<thead>
<tr>
<th>High Speed (HS)</th>
<th>Gears</th>
<th>A (Gbps)</th>
<th>B (Gbps)</th>
<th>Oscilloscope Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1.25</td>
<td>1.45</td>
<td>6 GHz</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>2.5</td>
<td>2.91</td>
<td>8 GHz</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>5</td>
<td>5.83</td>
<td>20 GHz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PWM (ie. TYPE-I)</th>
<th>Gears</th>
<th>Min (Mb/s)</th>
<th>Max (Mb/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0</td>
<td>0.01</td>
<td>3</td>
<td>50 MHz</td>
</tr>
<tr>
<td>G1</td>
<td>3</td>
<td>9</td>
<td>50 MHz</td>
</tr>
<tr>
<td>G2</td>
<td>6</td>
<td>18</td>
<td>100 MHz</td>
</tr>
<tr>
<td>G3</td>
<td>12</td>
<td>36</td>
<td>150 MHz</td>
</tr>
<tr>
<td>G4</td>
<td>24</td>
<td>72</td>
<td>250 MHz</td>
</tr>
<tr>
<td>G5</td>
<td>48</td>
<td>144</td>
<td>500 MHz</td>
</tr>
<tr>
<td>G6</td>
<td>96</td>
<td>288</td>
<td>1 GHz</td>
</tr>
<tr>
<td>G7</td>
<td>192</td>
<td>576</td>
<td>4 GHz</td>
</tr>
</tbody>
</table>

SYS (ie. TYPE-II)

576 (Mb/s) 4 GHz

Global Standards for the Microelectronics Industry
Preparing For UFS Electrical Compliance

M-PHY Triggering

- Capturing HS Gear and PWM Gear Signaling
 - Aids in identification of timing/amplitude errors

- Serial Trigger System Approaches

[Images of HS Gear – 8b/10b Trigger and PWM Gears – NRZ Trigger]
Preparing For UFS Electrical Compliance

M-PHY HS Gear Decode, Trigger & Search

- Aids debugging by verifying consistency of bus performance over time
- Decode function can look Symbols or 10-bit Characters
- Decode HS Gear 1 - 3 Data Rates
- Trigger & Search on
 - Any Control Character
 - Character/ Symbol
 - Pattern
 - Error (Character Error & Disparity Error)
Preparing For UFS Electrical Compliance

M-PHY Tx Test Automation

- Tests today are tied to M-PHY CTS Specification 1.0
 - CTS1.0 just released by MIPI
Preparing for UFS Interconnect Compliance

- Board and PHY impedance tests that address tolerance for PHY insertion loss on M-PHY devices
- Requires time and frequency domain analysis
 - Time domain tests
 - Impedance
 - Delay
 - Frequency domain tests
 - Differential insertion loss

- Sampling Oscilloscope w/S Parameter Capability
UFS Interconnect Testing

Time-Domain Reflectometry (TDR)

- Common TDR Measurements:
 - Impedance
 - Delay

![Sampling Scope display of two TDR waveforms](image)
UFS Interconnect Testing

Frequency Domain S-Parameters

- Frequency-domain characterization of reflections and loss on UFS Interconnects

- Common S-parameter Measurements:
 - Differential return loss
 - Differential insertion loss
 - Frequency domain crosstalk
De-embedding interconnect loss

- SDLA Visualizer de-embeds reflections from UFS interconnect
Preparing for UFS Electrical Compliance

- M-PHY Receiver Testing (needed for HS Gears)
 - Stimulus
 - Arbitrary Waveform Generator
 - Bit Error Detector
 - Oscilloscope
M-PHY Rx Testing
Generating Test Impairments using Arbitrary Waveform Generator

- Support needed for flexible signal impairments for characterization.
- Support needed for Jitter insertion and Pulse Width Modulation as per the M-PHY CTS v1.0.
- Support for DUT in both loopback and non-loopback mode.
M-PHY Rx Test Automation

Oscilloscope-based M-PHY BER with AWG as Pattern Source

- HS Gear 8b/10b Error Detect & Pattern Generation:
 - Hardware Serial trigger: 1.25 Gb/s - 6.25 Gb/s
 - BER for PRBS @ 312Mbs+ data rates.
- Testing Guidance in published Tek Methods of Implementation
Preparing For UFS Protocol Testing

• Protocol Analysis of UFS
 – Oscilloscope for capture & decoding of UniPro and UFS protocol
 • Consistent with MPHY Bandwidth recommendations
 – Ensure link traffic edge captures
 – UniPro defines a universal chip-to-chip data transport protocol, providing a common tunnel for higher-level protocols
UFS Protocol Testing

Seamless PHY & Protocol Views

- Protocol Decode placed right below oscilloscope waveforms
- Packet level info collapses to view packet content
- Link the UniPro/UFS packet to oscilloscope waveform
UFS Protocol Testing

Speed up verification & compliance checks

- Enable faster system level protocol debugging
 - Trigger – target specific events/messages
 - Protocol and physical layer data correlation
- Speed up verification for UFS Compliance
 - Automated CRC computation to monitor CRC errors in protocol packet
- Conforms to UniPro Protocol Specification version 1.41.00
Looking Ahead

• UFS Compliance Testing
 – An open test house / certification process
 – A multi-vendor CTS specification
 – Vendor-based “Methods of Implementation”

• MIPI Alliance
 – UFS2.0 support is well-defined with UniPro v.1.6 & MPHY 3.0 but future requirements for UFS3.0 have just begun
 • UniPro WG seeking more formal requirements discussions for future of UFS3.0
Tektronix M-PHY & Memory Testing Resources

www.tek.com/technology/ddr
www.tek.com/technology/mipi

- Videos/Webinars
- Application Notes
- Product Manuals
- Product Data Sheets
- Recommended Test Equipment
- M-PHY CTS Test Spec