Global Standards for the Microelectronics Industry
Standards & Documents Search
Displaying 1 - 3 of 3 documents.
Title | Document # | Date |
---|---|---|
HIGH BANDWIDTH MEMORY (HBM) DRAM |
JESD235D | Mar 2021 |
The HBM DRAM is tightly coupled to the host compute die with a distributed interface. The interface is divided into independent channels. Each channel is completely independent of one another. Channels are not necessarily synchronous to each other. The HBM DRAM uses a wide-interface architecture to achieve high-speed, low-power operation. The HBM DRAM uses differential clock CK_t/CK_c. Commands are registered at the rising edge of CK_t, CK_c. Each channel interface maintains a 128b data bus operating at DDR data rates. Also available for designer ease of use is HBM Ballout Spreadsheet (Note this version is the latest version for use with JESD235D). Committee item 1797.99L. Committee(s): JC-42.3C Available for purchase: $247.00 Add to Cart Paying JEDEC Members may login for free access. |
||
Part Model Electrical Guidelines for Electronic-Device Packages – XML Requirements |
JEP30-E100E | Aug 2024 |
This standard establishes the requirements for exchanging part data between part manufacturers and their customers for electrical and electronic products. This standard applies to all forms of electronic parts. It forms part of the Part Model XML Schema, which covers the parental structure for the electrical, physical, Electrical, assembly process classification data along with materials and substances that may be present in the supplied product or subproducts. This Guideline specifically focuses on the “Electrical” sub-section of the Part Model. For more information visit the main JEP30 webpage. Committee(s): JC-11, JC-11.2, JC-16 Free download. Registration or login required. |
||
NEAR-TERM DRAM LEVEL ROWHAMMER MITIGATION |
JEP300-1 | Mar 2021 |
RAM process node transistor scaling for power and DRAM capacity has made DRAM cells more sensitive to disturbances or transient faults. This sensitivity becomes much worse if external stresses are applied in a meticulously manipulated sequence, such as Rowhammer. Rowhammer related papers have been written outside of JEDEC, but some assumptions used in those papers didn’t explain the problem very clearly or correctly, so the perception for this matter is not precisely understood within the industry. This publication defines the problem and recommends following mitigations to address such concerns across the DRAM industry or academia. Item 1866.01. Committee(s): JC-42 Free download. Registration or login required. |