Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # |
Date![]() |
---|---|---|
SYSTEM LEVEL ESD: PART II: IMPLEMENTATION OF EFFECTIVE ESD ROBUST DESIGNSThis is an editorial revision, details can be found in Annex F. |
JEP162A.01 | Jan 2021 |
This document, while establishing the complex nature of System Level ESD, proposes that an efficient ESD design can only be achieved when the interaction of the various components under ESD conditions are analyzed at the system level. This objective requires an appropriate characterization of the components and a methodology to assess the entire system using simulation data. This is applicable to system failures of different categories (such as hard, soft, and electromagnetic interference (EMI)). This type of systematic approach is long overdue and represents an advanced design approach which replaces the misconception, as discussed in detail in JEP161, that a system will be sufficiently robust if all components exceed a certain ESD level. Free download. Registration or login required. |
||
STEADY-STATE TEMPERATURE-HUMIDITY BIAS LIFE TEST |
JESD22-A101D.01 | Jan 2021 |
This standard establishes a defined method and conditions for performing a temperature-humidity life test with bias applied. The test is used to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs high temperature and humidity conditions to accelerate the penetration of moisture through external protective material or along interfaces between the external protective coating and conductors or other features that pass through it. This revision enhances the ability to perform this test on a device which cannot be biased to achieve very low power dissipation. Free download. Registration or login required. |
||
DDR4 NVDIMM-P BUSS PROTOCOL |
JESD304-4 | Nov 2020 |
TEMPORARILY REMOVED 12/8/20. If your downloaded proir to this date please discard this iwill be republished shortly as JESD304-4.01An NVDIMM-P device is defined as a LRDIMM memory module which provides host controller access to DRAM and/or other memory devices such as persistent memory. A transactional protocol is described for NVDIMM-P, which may be used on a DDR interface allowing operation of both standard DRAM modules and NVDIMM-P modules on the same channel. Item 2233.98K. Committee(s): JC-45.6 |
||
Annex A, R/C A, in 288-Pin, 1.2 V (VDD), PC4-1600/PC4-1866/PC4-2133/PC4-2400/PC4-2666/PC4-3200 DDR4 SDRAM Unbuffered DIMM Design SpecificationRelease Number: 30A |
MODULE4.20.26.A | Nov 2020 |
This document defines the electrical and mechanical requirements for Raw Card A, 288-pin, 1.2 Volt (VDD), Unbuffered, Double Data Rate, Synchronous DRAM Dual In-Line Memory Modules (DDR4 SDRAM UDIMMs). These DDR4 Unbuffered DIMMs (UDIMMs) are intended for use as main memory when installed in PCs. Committee Item 2231.38A. Committee(s): JC-45.3 JESD21-C Solid State Memory Documents Main Page Free download. Registration or login required. |
||
Registration - Plastic Multi Position Flange Mount Mixed Technology, 0.10 in. Pitch Package |
TO-220L.01 | Nov 2020 |
Item 11.10-456(E) Free download. Registration or login required. |