Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # | Date |
---|---|---|
3D CHIP STACK WITH THROUGH-SILICON VIAS (TSVS): Identifying, Evaluating and Understanding Reliability Interactions |
JEP158 | Nov 2009 |
To increase device bandwidth, reduce power and shrink form factor, microelectronics manufacturers are implementing three dimensional (3D) chip stacking using through silicon vias (TSVs). Chip stacking with TSVs combines silicon and packaging technologies. As a result, these new structures have unique reliability requirements. This document is a guideline that describes how to evaluate the reliability of 3D TSV silicon assemblies. Free download. Registration or login required. |
||
GUIDELINE FOR INTERNAL GAS ANALYSIS FOR MICROELECTRONIC PACKAGESStatus: Reaffirmed November 2020 |
JEP144A | Nov 2011 |
This guideline is applicable to hermetically sealed microelectronic components (including discrete semiconductors, monolithic and hybrid microcircuits). Specific cases with unique packaging, materials, or environmental constraints may not find all of the following information and procedures applicable. Committee(s): JC-13 Free download. Registration or login required. |
||
POTENTIAL FAILURE MODE AND EFFECTS ANALYSIS (FMEA) |
JEP131C | Aug 2018 |
This publication applies to electronic components and subassemblies product and or process development, manufacturing processes and the associated performance requirements in customer applications. These areas should include, but are not limited to: package design, chip design, process development, assembly, fabrication, manufacturing, materials, quality, service, and suppliers, as well as the process requirements needed for the next assembly. Committee(s): JC-14.4 Free download. Registration or login required. |
||
SOLID STATE RELIABILITY ASSESSMENT QUALIFICATION METHODOLOGIES |
JEP143D | Jan 2019 |
The purpose of this publication is to provide an overview of some of the most commonly used systems and test methods historically performed by manufacturers to assess and qualify the reliability of solid state products. The appropriate references to existing and proposed JEDEC (or EIA) standards and publications are cited. This document is also intended to provide an educational background and overview of some of the technical and economic factors associated with assessing and qualifying microcircuit reliability. Free download. Registration or login required. |
||
LONG-TERM STORAGE GUIDELINES FOR ELECTRONIC SOLID-STATE WAFERS, DICE, AND DEVICES |
JEP160A | Aug 2022 |
This publication examines the LTS requirements of wafers, dice, and packaged solid-state devices. The user should evaluate and choose the best practices to ensure their product will maintain as-received device integrity and minimize age- and storage-related degradation effects. Free download. Registration or login required. |
||
CHARACTERIZATION OF INTERFACIAL ADHESION IN SEMICONDUCTOR PACKAGES |
JEP167A | Nov 2020 |
This document identifies methods used for the characterization of die adhesion. It gives guidance which method to apply in which phase of the product or technology life cycle. Committee(s): JC-14.1 Free download. Registration or login required. |
||
RECOMMENDED ESD TARGET LEVELS FOR HBM/MM QUALIFICATIONStatus: Reaffirmed January 2024 |
JEP155B | Jul 2018 |
This document was written with the intent to provide information for quality organizations in both semiconductor companies and their customers to assess and make decisions on safe ESD level requirements. It will be shown through this document why realistic modifying of the ESD target levels for component level ESD is not only essential but is also urgent. The document is organized in different sections to give as many technical details as possible to support the purpose given in the abstract. In June 2009 the formulating committee approved the addition of the ESDA logo on the covers of this document. Please see Annex C for revision history. Reaffirmed: January 2024 Free download. Registration or login required. |
||
RECOMMENDED ESD-CDM TARGET LEVELS |
JEP157A | Apr 2022 |
This document was written with the intent to provide information for quality organizations in both semiconductor companies and their customers to assess and make decisions on safe ESD CDM level requirements. Free download. Registration or login required. |
||
SYSTEM LEVEL ESD: PART II: IMPLEMENTATION OF EFFECTIVE ESD ROBUST DESIGNSThis is an editorial revision, details can be found in Annex F. |
JEP162A.01 | Jan 2021 |
This document, while establishing the complex nature of System Level ESD, proposes that an efficient ESD design can only be achieved when the interaction of the various components under ESD conditions are analyzed at the system level. This objective requires an appropriate characterization of the components and a methodology to assess the entire system using simulation data. This is applicable to system failures of different categories (such as hard, soft, and electromagnetic interference (EMI)). This type of systematic approach is long overdue and represents an advanced design approach which replaces the misconception, as discussed in detail in JEP161, that a system will be sufficiently robust if all components exceed a certain ESD level. Free download. Registration or login required. |
||
GUIDE TO STANDARDS AND PUBLICATIONS RELATING TO QUALITY AND RELIABILITY OF ELECTRONIC HARDWARE |
JEP70C | Oct 2013 |
This document gathers and organizes common standards and publications relating to quality processes and methods relating to the solid-state, microelectronics, and associated industries. This is intended to facilitate access to the applicable documents when working with electronic hardware. This will have a positive effect on quality and reliability as users gain more access to proper methods in designing, producing, and testing parts. Committee(s): JC-14.4 Free download. Registration or login required. |
||
RELIABILITY QUALIFICATION OF SEMICONDUCTOR DEVICES BASED ON PHYSICS OF FAILURE RISK AND OPPORTUNITY ASSESSMENTStatus: Reaffirmed September 2019 |
JEP148B | Jan 2014 |
A concept is outlined, which proactively integrates qualification into the development process and provides a systematic procedure as support tool to development and gives early focus on required activities. It converts requirements for a product into measures of development and qualification in combination with a risk and opportunity assessment step and accompanies the development process as guiding and recording tool for advanced quality planning and confirmation. The collected data enlarge the knowledge database for DFR / BIR (design for reliability / building-in reliability) to be used for future projects. The procedure challenges and promotes teamwork of all involved disciplines. Free download. Registration or login required. |
||
FOUNDRY PROCESS QUALIFICATION GUIDELINES - BACKEND OF LIFE (Wafer Fabrication Manufacturing Sites) |
JEP001-1A | Sep 2018 |
This document describes backend-level test and data methods for the qualification of semiconductor technologies. It does not give pass or fail values or recommend specific test equipment, test structures or test algorithms. Wherever possible, it references applicable JEDEC such as JESD47 or other widely accepted standards for requirements documentation. Committee(s): JC-14.2 Free download. Registration or login required. |
||
GUIDELINE FOR OBTAINING AND ACCEPTING MATERIAL FOR USE IN HYBRID/MCM PRODUCTSStatus: Reaffirmed May 2023 |
JEP142 | May 2023 |
This document provides guidance regarding design considerations, material assessment techniques, and recommendations for material acceptance prior to use in Hybrid/MCM Products. As part of the risk assessment process, both technical requirements and cost should be carefully considered with regard to testing/evaluating the elements of a hybrid microcircuit or Multi-chip Module (MCM) prior to material release for assembly. The intent of this document is to highlight various options that are available to the Hybrid / MCM manufacturer and provide associated guidance, not to impose a specific set of tests. Free download. Registration or login required. |
||
Guideline for Characterizing Solder Bump Electromigration Under Constant Current and Temperature Stress |
JEP154A | Mar 2024 |
This publication describes a method to test the electromigration susceptibility of solder bumps, including other types of bumps, such as solder capped copper pillars, used in flip-chip packages. Free download. Registration or login required. |
||
CHIP-PACKAGE INTERACTION UNDERSTANDING, IDENTIFICATION AND EVALUATION |
JEP156A | Mar 2018 |
This publication references a set of frequently recommended and accepted JEDEC reliability stress tests. These tests are used for qualifying new and modified technology/ process/ product families, as well as individual solid state surface-mount products. Free download. Registration or login required. |
||
Guidelines for Visual Inspection and Control of Flip Chip Type Packages (FCxGA) |
JEP170A | Jun 2024 |
This document provides guidelines for visual inspection and control that ensures quality and reliability of flip chip packaged devices. Free download. Registration or login required. |
||
SOLID STATE PRODUCTS REGISTRATION LIST(ORDER FROM TYPE ADMINISTRATION OFFICE)Status: ReaffirmedNovember 2002 |
JEP64 | Jan 1986 |
This publication includes addenda from 1976 to August 1986. The purpose of this list is to determine release numbers (file numbers) for JEDEC Type Designations. (See page 6 for more information.) Committee(s): JCJEDC |
||
Stress-Test-Driven Qualification of and Failure Mechanisms Associated with Assembled Solid State Surface-Mount Devices |
JEP150A | Dec 2023 |
This publication contains frequently recommended and accepted JEDEC reliability stress tests applied to surface-mount solid state devices. Free download. Registration or login required. |
||
CHARACTERIZATION AND MONITORING OF THERMAL STRESS TEST OVEN TEMPERATURESStatus: Reaffirmed September 2019 |
JEP153A | Mar 2014 |
This document provides an industry standard method for characterization and monitoring thermal stress test oven temperatures. The procedures described in this document should be used to insure thermal stress test conditions are being achieved and maintained during various test procedures. Free download. Registration or login required. |
||
A PROCEDURE FOR EXECUTING SWEAT:Status: Reaffirmed October 2012, September 2018 |
JEP119A | Aug 2003 |
This document describes an algorithm for performing the Standard Wafer Level Electromigration Accelerated Test (SWEAT) method with computer controlled instrumentation. The algorithm requires a separate iterative technique (not provided) to calculate the force current for a given target time to failure. This document does not specify what test structure to use with this procedure. However, users of this algorithm report its effectiveness on both straight-lines and via-terminated test structures. Some test-structures design features are provided in JESD87 and in ASTM 1259M - 96. Committee(s): JC-14.2 Free download. Registration or login required. |
||
GUIDELINE FOR CONSTANT TEMPERATURE AGING TO CHARACTERIZE ALUMINUM INTERCONNECT METALLIZATIONS FOR STRESS-INDUCED VOIDING:Status: ReaffirmedOctober 2012 |
JEP139 | Dec 2000 |
This document describes a constant temperature (isothermal) aging method for testing aluminum (Al) metallization test structures on microelectronics wafers for susceptibility to stress-induced voiding. This method is valid for metallization/dielectric systems in which the dielectric is deposited onto the metallization at a temperature considerably above the intended use temperature, and above or equal to the deposition temperature of the metal. Although this is a wafer test, it is not a fast (less than 5 minutes per probe) test. It is intended to be used for lifetime prediction and failure analysis, not for production Go-NoGo lot checking. Committee(s): JC-14.2 Free download. Registration or login required. |
||
GDDR5 MEASUREMENT PROCEDURES |
JEP171 | Aug 2014 |
This publication is to inform all industry participants of a unified procedure to enable consistent measurement across the industry. This document contains the measurement procedures for testing GDDR5. Committee(s): JC-42.3 Free download. Registration or login required. |
||
Guidelines for Supplier Performance Rating |
JEP146B | May 2023 |
This publication establishes guidelines and provides examples by which customers can measure their suppliers based on mutually agreed upon objective criteria. Free download. Registration or login required. |
||
JEDEC REQUIREMENTS FOR CLASS B MICROCIRCUITSStatus: Rescinded, May 2006 |
JEP101-C | Nov 1995 |
Committee(s): JC-13.2 Free download. Registration or login required. |
||
SYMBOL AND LABELS FOR MOISTURE-SENSITIVE DEVICES - SUPERSEDED BY J-STD-033, April 2018.Status: Rescinded, November 2018 |
JEP113B | May 1999 |
Certain PSMC (Plastic Surface-mount Components) are subject to permanent damage due to moisture-induced failures encountered during high-temperature surface-mount processing unless appropriate precautions are observed. The purpose of this publication is to provide a distinctive symbol and labels to be used to identify those devices that require special packing and handling precautions. Committee(s): JC-14.1 Free download. Registration or login required. |
||
INDEX OF TERMS DEFINED IN JEDEC PUBLICATIONS:Status: Rescinded September 2007 |
JEP120A | May 2000 |
This publication provides an index to terms that are defined in certain JEDEC publications. It is intended to promote the uniform use of these terms and their definitions while reducing the proliferation of new definitions for old terms. Committee(s): JC-10 |
||
Guidelines for Particle Impact Noise Detection (PIND) Testing, Operator Training, and Certification |
JEP114A | May 2023 |
This publication is a guideline to test facilities in their efforts to establish and maintain consistent particle impact noise detection (PIND) testing. Free download. Registration or login required. |
||
PROCEDURE FOR THE EVALUATION OF LOW-k/METAL INTER/INTRA-LEVEL DIELECTRIC INTEGRITY |
JEP159A | Jul 2015 |
This document is intended for use in the semiconductor IC manufacturing industry and provides reliability characterization techniques for low-k inter/intra level dielectrics (ILD) for the evaluation and control of ILD processes. It describes procedures developed for estimating the general integrity of back end-of-line (BEOL) ILD. Two basic test procedures are described, the Voltage-Ramp Dielectric Breakdown (VRDB) test, and the Constant Voltage Time-Dependent Dielectric Breakdown stress (CVS). Each test is designed for different reliability and process evaluation purposes. This document also describes robust techniques to detect breakdown and TDDB data analysis. Free download. Registration or login required. |
||
BEADED THERMOCOUPLE TEMPERATURE MEASUREMENT OF SEMICONDUCTOR PACKAGESStatus: ReaffirmedJune 2006, September 2011, January 2015 |
JEP140 | Jun 2002 |
The beaded thermocouple temperature measurement guideline provides a procedure to accurately and consistently measure the temperature of semiconductor packages during exposure to thermal excursions. The guideline applications can include, but not limited to, temperature profile measurement in reliability test chambers and solder reflow operations that are associated with component assembly to printed wiring boards. Free download. Registration or login required. |
||
SELECTION OF BURN-IN / LIFE TEST CONDITIONS AND CRITICAL PARAMETERS FOR QML MICROCIRCUITS |
JEP163A | Jan 2023 |
This publication is a guideline to assist manufacturers of integrated circuits in defining conditions for burn-in and life test of their products to meet quality and reliability performance requirements of MIL-PRF-38535. Free download. Registration or login required. |
||
Test Procedure for the Measurement of Terrestrial Cosmic Ray Induced Destructive Effects in Power Semiconductor Devices |
JEP151A | Jan 2022 |
This test method defines the requirements and procedures for terrestrial destructive* single-event effects (SEE) for example, single-event breakdown (SEB), single-event latch-up (SEL) and single-event gate rupture (SEGR) testing . It is valid when using an accelerator, generating a nucleon beam of either; 1) Mono-energetic protons or mono-energetic neutrons of at least 150 MeV energy, or 2) Neutrons from a spallation spectrum with maximum energy of at least 150 MeV. This test method does not apply to testing that uses beams with particles heavier than protons. *This test method addresses a separate risk than does JESD89 tests for non-destructive SEE due to cosmic radiation effects on terrestrial applications.
Committee(s): JC-14.1 Free download. Registration or login required. |
||
JC-42.6 MANUFACTURER IDENTIFICATION (ID) CODE FOR LOW POWER MEMORIES |
JEP166E | Jul 2023 |
This document defines the JC-42.6 Manufacturer ID. This document covers Manufacturer ID Codes for the following technologies: LPDDR (JESD209), LPDDR2 (JESD209-2), LPDDR3 (JESD209-3), LPDDR4 (JESD209-4), Wide-IO (JESD229), and Wide-IO2 (JESD229-2). The purpose of this document is to define the Manufacturer ID for these devices. Item No. 1725.03C. See Annex for additions/changes. To make a request for an ID code: https://www.jedec.org/id-codes-low-power-memories Committee(s): JC-42.6 Free download. Registration or login required. |
||
JEP95 Registrations Main Page |
JEP95 Index | Apr 2001 |
This page will provide a link to the Master Index for JEP95. It also provides a link to 'index by device type' as well as the table of contents for each section within JEP95. For older outlines that have been archived, they can be accessed through this page. Committee(s): JC-11 |
||
SYSTEM LEVEL ESD PART 1: COMMON MISCONCEPTIONS AND RECOMMENDED BASIC APPROACHESStatus: ReaffirmedApril 2023 |
JEP161 | Jan 2011 |
This report is the first part of a two part document. Part I will primarily address hard failures characterized by physical damage to a system (failure category d as classified by IEC 61000-4-2). Soft failures, in which the system’s operation is upset without physical damage, are also critical and predominant in many cases. Free download. Registration or login required. |
||
UNDERSTANDING ELECTRICAL OVERSTRESS - EOSStatus: Reaffirmed May 2022 |
JEP174 | Sep 2016 |
This purpose of this white paper will be to introduce a new perspective about EOS to the electronics industry. As failures exhibiting EOS damage are commonly experienced in the industry, and these severe overstress events are a factor in the damage of many products, the intent of the white paper is to clarify what EOS really is and how it can be mitigated once it is properly comprehended. Committee(s): JC-14.3 Free download. Registration or login required. |
||
STANDARD MANUFACTURERS IDENTIFICATION CODE |
JEP106BK | Sep 2024 |
The manufacturers identification code is defined by one or more 8 bit fields, each consisting of 7 data bits plus 1 odd parity bit. The manufacturers identification code is assigned, maintained and updated by the JEDEC Office. The intent of this identification code is that it may be used whenever a digital field is required, e.g., hardware, software, documentation, etc. To make a request for an ID Code please go to https://www.jedec.org/standards-documents/id-codes-order-form Free download. Registration or login required. |
||
FAILURE MECHANISMS AND MODELS FOR SEMICONDUCTOR DEVICES |
JEP122H | Sep 2016 |
This publication provides a list of failure mechanisms and their associated activation energies or acceleration factors that may be used in making system failure rate estimations when the only available data is based on tests performed at accelerated stress test conditions. The method to be used is the Sum-of-the-Failure-Rates method. This publication also provides guidance in the selection of reliability modeling parameters, namely functional form, apparent thermal activation energy values and sensitivity to stresses such as power supply voltage, substrate current, current density, gate voltage, relative humidity, temperature cycling range, mobile ion concentration, etc. Committee(s): JC-14.2 Available for purchase: $163.00 Add to Cart Paying JEDEC Members may login for free access. |
||
DISCONTINUING USE OF THE MACHINE MODEL FOR DEVICE ESD QUALIFICATIONStatus: Reaffirmed September 2020 |
JEP172A | Jul 2015 |
Over the last several decades the so called "machine model" (aka MM) and its application to the required ESD component qualification has been grossly misunderstood. The scope of this JEDEC document is to present evidence to discontinue use of this particular model stress test without incurring any reduction in the IC component's ESD reliability for manufacturing. In this regard, the document's purpose is to provide the necessary technical arguments for strongly recommending no further use of this model for IC qualification. The published document should be used as a reference to propagate this message throughout the industry. Committee(s): JC-14.3 Free download. Registration or login required. |
||
DDR4 PROTOCOL CHECKS |
JEP175 | Jul 2017 |
The intended use of this document is for the validation and debug of DDR4 based designs. This document contains protocol checks, sometimes referred to as memory access rules or protocol violations. This document contains a list of checks that can be used during the verification or debug stages of development to check that accesses to a DDR4 DRAM adhere to JESD79-4B. These checks are derived from JESD79-4B. Item 31509. Committee(s): JC-40.5 Free download. Registration or login required. |
||
ADAPTER TEST BOARD RELIABILITY TEST GUIDELINES |
JEP176 | Jan 2018 |
This publication describes guidelines for applying JEDEC reliability tests and recommended testing procedures to integrated circuits that require adapter test boards for electrical and Committee(s): JC-14.3 Free download. Registration or login required. |