Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # |
Date![]() |
---|---|---|
EXTERNAL VISUAL |
JESD22-B101D | Apr 2022 |
External visual inspection is an examination of the external surfaces, construction, marking, and workmanship of a finished package or component. External visual is a noninvasive and nondestructive test. It is functional for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
METHOD FOR DEVELOPING ACCELERATION MODELS FOR ELECTRONIC DEVICE FAILURE MECHANISMS |
JESD91B | Mar 2022 |
The method described in this document applies to all reliability mechanisms associated with electronic devices. The purpose of this standard is to provide a reference for developing acceleration models for defect-related and wear-out mechanisms in electronic devices. Committee(s): JC-14.3 Free download. Registration or login required. |
||
TEST METHOD FOR THE MEASUREMENT OF MOISTURE DIFFUSIVITY AND WATER SOLUBILITY IN ORGANIC MATERIALS USED IN ELECTRONIC DEVICES |
JESD22-A120C | Jan 2022 |
This standard details the procedures for the measurement of characteristic bulk material properties of moisture diffusivity and water solubility in organic materials used in the packaging of electronic devices. These two material properties are important parameters for the effective reliability performance of plastic packaged surface mount devices after exposure to moisture and subjected to high temperature solder reflow. Committee(s): JC-14.1 Free download. Registration or login required. |
||
SEMICONDUCTOR WAFER AND DIE BACKSIDE EXTERNAL VISUAL INSPECTION |
JESD22-B118A | Nov 2021 |
This inspection method is for product semiconductor wafers and dice prior to assembly. This test method defines the requirements to execute a standardized external visual inspection and is a non-invasive and nondestructive examination that can be used for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
TEST METHOD FOR BEAM ACCELERATED SOFT ERROR RATE |
JESD89-3B | Sep 2021 |
This test is used to determine the terrestrial cosmic ray Soft Error Rate (SER) sensitivity of solid state volatile memory arrays and bistable logic elements (e.g., flip-flops) by measuring the error rate while the device is irradiated in a neutron or proton beam of known flux. The results of this accelerated test can be used to estimate the terrestrial cosmic ray induced SER for a given terrestrial cosmic ray radiation environment. This test cannot be used to project alpha-particle induced SER. Committee(s): JC-14.1 Free download. Registration or login required. |
||
GENERAL REQUIREMENTS FOR DISTRIBUTORS OF COMMERCIAL AND MILITARY SEMICONDUCTOR DEVICES |
JESD31F | Aug 2021 |
This standard identifies the general requirements for Distributors that supply Commercial and Military products. This standard applies to all discrete semiconductors, integrated circuits and Hybrids, whether packaged or in wafer/die form, manufactured by all Manufacturers. The requirements defined within this document are only applicable to products for which ownership remains with the Distributor or Manufacturer. Free download. Registration or login required. |
||
TEST METHOD FOR REAL-TIME SOFT ERROR RATE |
JESD89-1B | Jul 2021 |
This test is used to determine the Soft Error Rate (SER) of solid state volatile memory arrays and bistable logic elements (e.g. flip-flops) for errors which require no more than re-reading or re-writing to correct and as used in terrestrial environments. It simulates the operating condition of the device and is used for qualification, characterization, or reliability monitoring. This test is intended for execution in ambient conditions without the artificial introduction of radiation sources. Free download. Registration or login required. |
||
TEST METHOD FOR ALPHA SOURCE ACCELERATED SOFT ERROR RATE |
JESD89-2B | Jul 2021 |
This test method is offered as standardized procedure to determine the alpha particle Soft Error Rate (SER) sensitivity of solid state volatile memory arrays and bistable logic elements (e.g. flipflops) by measuring the error rate while the device is irradiated by a characterized, solid alph source. Free download. Registration or login required. |
||
METHODS FOR CALCULATING FAILURE RATES IN UNITS OF FITS |
JESD85A | Jul 2021 |
This standard establishes methods for calculating failure rates in units of FITs by using data in varying degrees of detail such that results can be obtained from almost any data set. The objective is to provide a reference to the way failure rates are calculated. Committee(s): JC-14.3 Free download. Registration or login required. |
||
HIGH TEMPERATURE STORAGE LIFE |
JESD22-A103E.01 | Jul 2021 |
The test is applicable for evaluation, screening, monitoring, and/or qualification of all solid state devices. The high temperature storage test is typically used to determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms and time-to failure distributions of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms). Thermally activated failure mechanisms are modeled using the Arrhenius Equation for acceleration. During the test, accelerated stress temperatures are used without electrical conditions applied. This test may be destructive, depending on time, temperature and packaging (if any). Committee(s): JC-14.1 Available for purchase: $55.00 Add to Cart Paying JEDEC Members may login for free access. |
||
ACCELERATED MOISTURE RESISTANCE - UNBIASED HAST |
JESD22-A118B.01 | May 2021 |
The Unbiased HAST is performed for the purpose of evaluating the reliability of nonhermetic packaged solid-state devices in humid environments. It is a highly accelerated test which employs temperature and humidity under noncondensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors that pass through it. Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g., galvanic corrosion). This test is used to identify failure mechanisms internal to the package and is destructive. Committee(s): JC-14.1 Free download. Registration or login required. |
||
HIGHLY ACCELERATED TEMPERATURE AND HUMIDITY STRESS TEST (HAST) |
JESD22-A110E.01 | May 2021 |
The purpose of this test method is to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs severe conditions of temperature, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. This is a minor editorial edit to JESD22A110E, July 2015 approved by the formulating committee. Committee(s): JC-14.1 Free download. Registration or login required. |
||
FLIP CHIP TENSILE PULL |
JESD22-B109C | Mar 2021 |
The Flip Chip Tensile Pull Test Method is performed to determine the fracture mode and strength of the solder bump interconnection between the flip chip die and the substrate. It should be used to assess the consistency of the chip join process. This test method is a destructive test. Committee(s): JC-14.1 Free download. Registration or login required. |
||
STEADY-STATE TEMPERATURE-HUMIDITY BIAS LIFE TEST |
JESD22-A101D.01 | Jan 2021 |
This standard establishes a defined method and conditions for performing a temperature-humidity life test with bias applied. The test is used to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs high temperature and humidity conditions to accelerate the penetration of moisture through external protective material or along interfaces between the external protective coating and conductors or other features that pass through it. This revision enhances the ability to perform this test on a device which cannot be biased to achieve very low power dissipation. Free download. Registration or login required. |
||
CYCLED TEMPERATURE HUMIDITY-BIAS WITH SURFACE CONDENSATION LIFE TEST |
JESD22-A100E | Nov 2020 |
The Cycled Temperature-humidity-bias Life Test is performed for the purpose of evaluating the reliability of nonhermetic packaged solid state devices in humid environments. It employs conditions of temperature cycling, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors that pass through it. The Cycled Temperature-Humidity-Bias Life Test is typically performed on cavity packages (e.g., MQUADs, lidded ceramic pin grid arrays, etc.) as an alternative to JESD22-A101 or JESD22-A110. Free download. Registration or login required. |
||
PRECONDITIONING OF NONHERMETIC SURFACE MOUNT DEVICES PRIOR TO RELIABILITY TESTING |
JESD22-A113I | Apr 2020 |
This Test Method establishes an industry standard preconditioning flow for nonhermetic solid state SMDs (surface mount devices) that is representative of a typical industry multiple solder reflow operation. These SMDs should be subjected to the appropriate preconditioning sequence of this document by the semiconductor manufacturer prior to being submitted to specific in-house reliability testing (qualification and reliability monitoring) to evaluate long term reliability (which might be impacted by solder reflow). Committee(s): JC-14.1 Free download. Registration or login required. |
||
CUSTOMER NOTIFICATION PROCESS FOR DISASTERS |
JESD246A | Jan 2020 |
This standard establishes the requirements for timely notification to affected customers after a disaster has occurred at a supplier’s facility that will affect the committed delivery of product. This standard puts specific emphasis on notification, timing, and notification content which includes risk exposure, impact analysis, and recovery plans. This standard is applicable to suppliers of, and affected customers for, solid-state products and the constituent components used within. Committee(s): JC-14.4 Free download. Registration or login required. |
||
POWER AND TEMPERATURE CYCLING |
JESD22-A105D | Jan 2020 |
The power and temperature cycling test is performed to determine the ability of a device to withstand alternate exposures at high and low temperature extremes and simultaneously the operating biases are periodically applied and removed. It is intended to simulate worst case conditions encountered in application environments. The power and temperature cycling test is considered destructive and is only intended for device qualification. This test method applies to semiconductor devices that are subjected to temperature excursions and required to power on and off during all temperatures. Free download. Registration or login required. |
||
MARK LEGIBILITY |
JESD22-B114B | Jan 2020 |
This standard describes a nondestructive test to assess solid state device mark legibility. The specification applies only to solid state devices that contain markings, regardless of the marking method. It does not define what devices must be marked or the method in which the device is marked, i.e., ink, laser, etc. The standard is limited in scope to the legibility requirements of solid state devices, and does not replace related reference documents listed in this standard. Committee(s): JC-14.1 Free download. Registration or login required. |
||
MECHANICAL SHOCK – DEVICE AND SUBASSEMBLY |
JESD22-B110B.01 | Jun 2019 |
Device and Subassembly Mechanical Shock Test Method is intended to evaluate devices in the free state and assembled to printed wiring boards for use in electrical equipment. The method is intended to determine the compatibility of devices and subassemblies to withstand moderately severe shocks. The use of subassemblies is a means to test devices in usage conditions as assembled to printed wiring boards. Mechanical Shock due to suddenly applied forces, or abrupt change in motion produced by handling, transportation or field operation may disturb operating characteristics, particularly if the shock pulses are repetitive. This is a destructive test intended for device qualification.This document also replaces JESD22-B104. Free download. Registration or login required. |