Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # |
Date![]() |
---|---|---|
Wire Bond Pull Test Methods |
JESD22-B120.01 | Sep 2024 |
This test method provides a means for determining the strength and failure mode of a wire bonded to, and the corresponding interconnects on, a die or package bonding surface and may be performed on pre-encapsulation or post-encapsulation devices. Free download. Registration or login required. |
||
Board Level Drop Test Method of Components for Handheld Electronic Products |
JESD22-B111A.01 | Jun 2024 |
This Test Method standardizes the test board and test methodology to provide a reproducible assessment of the drop test performance of surface mounted components. Free download. Registration or login required. |
||
Information Requirements for the Qualification of Solid State Devices |
JESD69D | Jun 2024 |
This standard defines the requirements for the device qualification package, which the supplier provides to the customer. Free download. Registration or login required. |
||
Gate Dielectric Breakdown |
JESD263 | Mar 2024 |
This document describes procedures developed for estimating the overall integrity of gate dielectrics. JESD263 supersedes these other 4 standards: JESD35A, JESD35-1 ADDENDUM, JESD35-2 and JESD92. Free download. Registration or login required. |
||
Requirements for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices |
JESD625C.01 | Mar 2024 |
This standard applies to devices susceptible to damage by electrostatic discharge greater than 100 volts human body model (HBM) and 200 volts charged device model (CDM). Free download. Registration or login required. |
||
Power Cycling |
JESD22-A122B | Nov 2023 |
This Test Method establishes a uniform method for performing solid state device package power cycling stress test. Free download. Registration or login required. |
||
Package Warpage Measurement of Surface-Mount Integrated Circuits at Elevated Temperature |
JESD22-B112C | Nov 2023 |
This test method is to measure the deviation from uniform flatness of an integrated circuit package body for the range of thermal conditions experienced during the surface-mount soldering operation. Free download. Registration or login required. |
||
IC LATCH-UP TEST |
JESD78F.02 | Nov 2023 |
This standard establishes the procedure for testing, evaluation and classification of devices and microcircuits according to their susceptibility (sensitivity) to damage or degradation by exposure to a defined latch-up stress. This standard has been adopted by the Defense Logistics Agency (DLA) as project 5962-1880. Free download. Registration or login required. |
||
Test Method for Total Ionizing Dose (TID) from X-ray Exposure in Terrestrial Applications |
JESD22-B121 | Nov 2023 |
This test method covers X-ray imaging for terrestrial applications on packaged devices. Free download. Registration or login required. |
||
Statistical Process Control Systems |
JESD557D | May 2023 |
This standard specifies the general requirements of a statistical process control (SPC) system. Committee(s): JC-14 Free download. Registration or login required. |
||
HYBRIDS/MCM |
JESD93A | May 2023 |
This specification establishes the general requirements for hybrid microcircuits, RF/microwave hybrid microcircuits and MCMs (hereafter referred to as devices). Detailed performance requirements for a specific device are specified in the applicable device acquisition document. In the event of a conflict between this document and the device acquisition document, the device acquisition document will take precedence. Committee(s): JC-14.3 Free download. Registration or login required. |
||
STANDARD METHOD FOR CALCULATING THE ELECTROMIGRATION MODEL PARAMETERS FOR CURRENT DENSITY AND TEMPERATURE:Status: Reaffirmed 4/17/23 |
JESD63 | Apr 2023 |
This method provides procedures to calculate sample estimates and their confidence intervals for the electromigration model parameters of current density and temperature. The model parameter for current density is the exponent (n) to which the current density is raised in Black's equation. The parameter for temperature is the activation energy for the electromigration failure process. Committee(s): JC-14.2 Free download. Registration or login required. |
||
STANDARD TEST STRUCTURE FOR RELIABILITY ASSESSMENT OF AlCu METALLIZATIONS WITH BARRIER MATERIALSStatus: Reaffirmed 04/17/2023 |
JESD87 | Apr 2023 |
This document describes design of test structures needed to assess the reliability of aluminum-copper, refractory metal barrier interconnect systems. This includes any metal interconnect system where a refractory metal barrier or other barrier material prevents the flow of aluminum and/or copper metal ions from moving between interconnect layers. This document is not intended to show design of test structures to assess aluminum or aluminum-copper alloy systems, without barriers to Al and Cu ion movement, nor for Cu only metal systems. Some total interconnect systems might not include barrier materials on all metal layers. The structures in this standard are designed for cases where a barrier material separates two Al or Al alloy metal layers. The purpose of this document is to describe the design of test structures needed to assess electromigration (EM) and stress-induced-void (SIV) reliability of AlCu barrier metal systems. Committee(s): JC-14.2, JC-14.21 Free download. Registration or login required. |
||
Temperature Cycling |
JESD22-A104F.01 | Apr 2023 |
This standard applies to single-, dual- and triple-chamber temperature cycling in an air or other gaseous medium and covers component and solder interconnection testing. Committee(s): JC-14.1 Free download. Registration or login required. |
||
THERMAL SHOCK |
JESD22-A106B.02 | Jan 2023 |
This test is conducted to determine the robustness of a device to sudden exposure to extreme changes in temperature and to the effect of alternate exposures to these extremes. Free download. Registration or login required. |
||
STRESS-TEST-DRIVEN QUALIFICATION OF INTEGRATED CIRCUITS |
JESD47L | Dec 2022 |
This standard describes a baseline set of acceptance tests for use in qualifying electronic components as new products, a product family, or as products in a process which is being changed. Available for purchase: $87.38 Add to Cart Paying JEDEC Members may login for free access. |
||
TEMPERATURE, BIAS, AND OPERATING LIFE |
JESD22-A108G | Nov 2022 |
This test is used to determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices’ operating condition in an accelerated way, and is primarily for device qualification and reliability monitoring. A form of high temperature bias life using a short duration, popularly known as burn-in, may be used to screen for infant mortality related failures. The detailed use and application of burn-in is outside the scope of this document. Free download. Registration or login required. |
||
Customer Notification for Environmental Compliance Declaration Deviations |
JESD262 | Nov 2022 |
This standard is invoked when a supplier becomes aware that a product’s environmental compliance declaration they provided or made available to their customers had an error that might cause a customer to draw an incorrect conclusion about the compliance of the product to legal requirements. Committee(s): JC-14.4 Free download. Registration or login required. |
||
TEST METHODS TO CHARACTERIZE VOIDING IN PRE-SMT BALL GRID ARRAY PACKAGES |
JESD217A.01 | Nov 2022 |
This publication provides an overview of solder void types, outlines current metrologies and test methods used for pre-SMPT solder void characterization and potential limitations, and prescribes sampling strategy for data collection, and tolerance guidelines for corrective measures. Committee(s): JC-14.1 Free download. Registration or login required. |
||
TEST METHOD FOR ESTABLISHING X-RAY TOTAL DOSE LIMIT FOR DRAM DEVICES |
JESD22-B130 | Sep 2022 |
This test method is offered as a standardized procedure to determine the total dose limit of DRAMs by measuring its refresh time tRef degradation after the device is irradiated with an X-Ray dose. This test method is applicable to any packaged device that contains a DRAM die or any embedded DRAM structure. Some indirect test methods such as wafer level characterization of total dose induced changes in leakage of access transistors are not described in this standard but are permissible as long as a good correlation is established. Committee(s): JC-14.1 Free download. Registration or login required. |
||
EXTERNAL VISUAL |
JESD22-B101D | Apr 2022 |
External visual inspection is an examination of the external surfaces, construction, marking, and workmanship of a finished package or component. External visual is a noninvasive and nondestructive test. It is functional for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
METHOD FOR DEVELOPING ACCELERATION MODELS FOR ELECTRONIC DEVICE FAILURE MECHANISMS |
JESD91B | Mar 2022 |
The method described in this document applies to all reliability mechanisms associated with electronic devices. The purpose of this standard is to provide a reference for developing acceleration models for defect-related and wear-out mechanisms in electronic devices. Committee(s): JC-14.3 Free download. Registration or login required. |
||
TEST METHOD FOR THE MEASUREMENT OF MOISTURE DIFFUSIVITY AND WATER SOLUBILITY IN ORGANIC MATERIALS USED IN ELECTRONIC DEVICES |
JESD22-A120C | Jan 2022 |
This standard details the procedures for the measurement of characteristic bulk material properties of moisture diffusivity and water solubility in organic materials used in the packaging of electronic devices. These two material properties are important parameters for the effective reliability performance of plastic packaged surface mount devices after exposure to moisture and subjected to high temperature solder reflow. Committee(s): JC-14.1 Free download. Registration or login required. |
||
SEMICONDUCTOR WAFER AND DIE BACKSIDE EXTERNAL VISUAL INSPECTION |
JESD22-B118A | Nov 2021 |
This inspection method is for product semiconductor wafers and dice prior to assembly. This test method defines the requirements to execute a standardized external visual inspection and is a non-invasive and nondestructive examination that can be used for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
TEST METHOD FOR BEAM ACCELERATED SOFT ERROR RATE |
JESD89-3B | Sep 2021 |
This test is used to determine the terrestrial cosmic ray Soft Error Rate (SER) sensitivity of solid state volatile memory arrays and bistable logic elements (e.g., flip-flops) by measuring the error rate while the device is irradiated in a neutron or proton beam of known flux. The results of this accelerated test can be used to estimate the terrestrial cosmic ray induced SER for a given terrestrial cosmic ray radiation environment. This test cannot be used to project alpha-particle induced SER. Committee(s): JC-14.1 Free download. Registration or login required. |
||
GENERAL REQUIREMENTS FOR DISTRIBUTORS OF COMMERCIAL AND MILITARY SEMICONDUCTOR DEVICES |
JESD31F | Aug 2021 |
This standard identifies the general requirements for Distributors that supply Commercial and Military products. This standard applies to all discrete semiconductors, integrated circuits and Hybrids, whether packaged or in wafer/die form, manufactured by all Manufacturers. The requirements defined within this document are only applicable to products for which ownership remains with the Distributor or Manufacturer. Free download. Registration or login required. |
||
TEST METHOD FOR REAL-TIME SOFT ERROR RATE |
JESD89-1B | Jul 2021 |
This test is used to determine the Soft Error Rate (SER) of solid state volatile memory arrays and bistable logic elements (e.g. flip-flops) for errors which require no more than re-reading or re-writing to correct and as used in terrestrial environments. It simulates the operating condition of the device and is used for qualification, characterization, or reliability monitoring. This test is intended for execution in ambient conditions without the artificial introduction of radiation sources. Free download. Registration or login required. |
||
TEST METHOD FOR ALPHA SOURCE ACCELERATED SOFT ERROR RATE |
JESD89-2B | Jul 2021 |
This test method is offered as standardized procedure to determine the alpha particle Soft Error Rate (SER) sensitivity of solid state volatile memory arrays and bistable logic elements (e.g. flipflops) by measuring the error rate while the device is irradiated by a characterized, solid alph source. Free download. Registration or login required. |
||
METHODS FOR CALCULATING FAILURE RATES IN UNITS OF FITS |
JESD85A | Jul 2021 |
This standard establishes methods for calculating failure rates in units of FITs by using data in varying degrees of detail such that results can be obtained from almost any data set. The objective is to provide a reference to the way failure rates are calculated. Committee(s): JC-14.3 Free download. Registration or login required. |
||
HIGH TEMPERATURE STORAGE LIFE |
JESD22-A103E.01 | Jul 2021 |
The test is applicable for evaluation, screening, monitoring, and/or qualification of all solid state devices. The high temperature storage test is typically used to determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms and time-to failure distributions of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms). Thermally activated failure mechanisms are modeled using the Arrhenius Equation for acceleration. During the test, accelerated stress temperatures are used without electrical conditions applied. This test may be destructive, depending on time, temperature and packaging (if any). Committee(s): JC-14.1 Available for purchase: $55.00 Add to Cart Paying JEDEC Members may login for free access. |
||
ACCELERATED MOISTURE RESISTANCE - UNBIASED HAST |
JESD22-A118B.01 | May 2021 |
The Unbiased HAST is performed for the purpose of evaluating the reliability of nonhermetic packaged solid-state devices in humid environments. It is a highly accelerated test which employs temperature and humidity under noncondensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors that pass through it. Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g., galvanic corrosion). This test is used to identify failure mechanisms internal to the package and is destructive. Committee(s): JC-14.1 Free download. Registration or login required. |
||
HIGHLY ACCELERATED TEMPERATURE AND HUMIDITY STRESS TEST (HAST) |
JESD22-A110E.01 | May 2021 |
The purpose of this test method is to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs severe conditions of temperature, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. This is a minor editorial edit to JESD22A110E, July 2015 approved by the formulating committee. Committee(s): JC-14.1 Free download. Registration or login required. |
||
FLIP CHIP TENSILE PULL |
JESD22-B109C | Mar 2021 |
The Flip Chip Tensile Pull Test Method is performed to determine the fracture mode and strength of the solder bump interconnection between the flip chip die and the substrate. It should be used to assess the consistency of the chip join process. This test method is a destructive test. Committee(s): JC-14.1 Free download. Registration or login required. |
||
STEADY-STATE TEMPERATURE-HUMIDITY BIAS LIFE TEST |
JESD22-A101D.01 | Jan 2021 |
This standard establishes a defined method and conditions for performing a temperature-humidity life test with bias applied. The test is used to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs high temperature and humidity conditions to accelerate the penetration of moisture through external protective material or along interfaces between the external protective coating and conductors or other features that pass through it. This revision enhances the ability to perform this test on a device which cannot be biased to achieve very low power dissipation. Free download. Registration or login required. |
||
CYCLED TEMPERATURE HUMIDITY-BIAS WITH SURFACE CONDENSATION LIFE TEST |
JESD22-A100E | Nov 2020 |
The Cycled Temperature-humidity-bias Life Test is performed for the purpose of evaluating the reliability of nonhermetic packaged solid state devices in humid environments. It employs conditions of temperature cycling, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors that pass through it. The Cycled Temperature-Humidity-Bias Life Test is typically performed on cavity packages (e.g., MQUADs, lidded ceramic pin grid arrays, etc.) as an alternative to JESD22-A101 or JESD22-A110. Free download. Registration or login required. |
||
PRECONDITIONING OF NONHERMETIC SURFACE MOUNT DEVICES PRIOR TO RELIABILITY TESTING |
JESD22-A113I | Apr 2020 |
This Test Method establishes an industry standard preconditioning flow for nonhermetic solid state SMDs (surface mount devices) that is representative of a typical industry multiple solder reflow operation. These SMDs should be subjected to the appropriate preconditioning sequence of this document by the semiconductor manufacturer prior to being submitted to specific in-house reliability testing (qualification and reliability monitoring) to evaluate long term reliability (which might be impacted by solder reflow). Committee(s): JC-14.1 Free download. Registration or login required. |
||
CUSTOMER NOTIFICATION PROCESS FOR DISASTERS |
JESD246A | Jan 2020 |
This standard establishes the requirements for timely notification to affected customers after a disaster has occurred at a supplier’s facility that will affect the committed delivery of product. This standard puts specific emphasis on notification, timing, and notification content which includes risk exposure, impact analysis, and recovery plans. This standard is applicable to suppliers of, and affected customers for, solid-state products and the constituent components used within. Committee(s): JC-14.4 Free download. Registration or login required. |
||
POWER AND TEMPERATURE CYCLING |
JESD22-A105D | Jan 2020 |
The power and temperature cycling test is performed to determine the ability of a device to withstand alternate exposures at high and low temperature extremes and simultaneously the operating biases are periodically applied and removed. It is intended to simulate worst case conditions encountered in application environments. The power and temperature cycling test is considered destructive and is only intended for device qualification. This test method applies to semiconductor devices that are subjected to temperature excursions and required to power on and off during all temperatures. Free download. Registration or login required. |
||
MARK LEGIBILITY |
JESD22-B114B | Jan 2020 |
This standard describes a nondestructive test to assess solid state device mark legibility. The specification applies only to solid state devices that contain markings, regardless of the marking method. It does not define what devices must be marked or the method in which the device is marked, i.e., ink, laser, etc. The standard is limited in scope to the legibility requirements of solid state devices, and does not replace related reference documents listed in this standard. Committee(s): JC-14.1 Free download. Registration or login required. |
||
MECHANICAL SHOCK – DEVICE AND SUBASSEMBLY |
JESD22-B110B.01 | Jun 2019 |
Device and Subassembly Mechanical Shock Test Method is intended to evaluate devices in the free state and assembled to printed wiring boards for use in electrical equipment. The method is intended to determine the compatibility of devices and subassemblies to withstand moderately severe shocks. The use of subassemblies is a means to test devices in usage conditions as assembled to printed wiring boards. Mechanical Shock due to suddenly applied forces, or abrupt change in motion produced by handling, transportation or field operation may disturb operating characteristics, particularly if the shock pulses are repetitive. This is a destructive test intended for device qualification.This document also replaces JESD22-B104. Free download. Registration or login required. |