Global Standards for the Microelectronics Industry
Standards & Documents Search
Title![]() |
Document # | Date |
---|---|---|
Information Requirements for the Qualification of Solid State Devices |
JESD69D | Jun 2024 |
This standard defines the requirements for the device qualification package, which the supplier provides to the customer. Free download. Registration or login required. |
||
ISOTHERMAL ELECTROMIGRATION TEST PROCEDUREStatus: Reaffirmed April 2025 |
JESD61A.01 | Oct 2007 |
This standard describes an algorithm for the execution of the isothermal test, using computer-controlled instrumentation. The primary use of this test is for the monitoring of microelectronic metallization lines at wafer level (1) in process development, to evaluate process options, (2) in manufacturing, to monitor metallization reliability and (3) to monitor/evaluate process equipment. While it is developed as a fast WLR test, it can also be an effective tool for complementing the reliability data obtained through the standard package level electromigration test. Free download. Registration or login required. |
||
LEAD INTEGRITYStatus: Reaffirmed - May 2023 |
JESD22-B105E | Feb 2017 |
This test method provides various tests for determining the integrity lead/package interface and the lead itself when the lead(s) are bent due to faulty board assembly followed by rework of the part for reassembly. For hermetic packages it is recommend that this test be followed by hermeticity tests in accordance with Test Method A109 to determine if there are any adverse effects from the stresses applied to the seals as well as to the leads. These tests, including each of its test conditions, is considered destructive and is only recommended for qualification testing. This test is applicable to all through-hole devices and surface-mount devices requiring lead forming by the user. Free download. Registration or login required. |
||
LOW TEMPERATURE STORAGE LIFEStatus: Reaffirmed May 2021 |
JESD22-A119A | Oct 2015 |
The test is applicable for evaluation, screening, monitoring, and/or qualification of all solid state devices Low Temperature storage test is typically used to determine the effect of time and temperature, under storage conditions, for thermally activated failure mechanisms of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms). During the test reduced temperatures (test conditions) are used without electrical stress applied. This test may be destructive, depending on Time, Temperature and Packaging (if any). Committee(s): JC-14.1 Free download. Registration or login required. |
||
MARK LEGIBILITY |
JESD22-B114B | Jan 2020 |
This standard describes a nondestructive test to assess solid state device mark legibility. The specification applies only to solid state devices that contain markings, regardless of the marking method. It does not define what devices must be marked or the method in which the device is marked, i.e., ink, laser, etc. The standard is limited in scope to the legibility requirements of solid state devices, and does not replace related reference documents listed in this standard. Committee(s): JC-14.1 Free download. Registration or login required. |
||
MARKING PERMANENCYStatus: Reaffirmed August 2024 |
JESD22-B107D | Mar 2011 |
This test method provides two tests for determining the marking permanency of ink marked integrated circuits. A new non-destructive tape test method is introduced to quickly determine marking integrity. The test method also specifies a resistance to solvents method based upon MIL Std 883 Method 2015. Free download. Registration or login required. |
||
MARKING, SYMBOLS, AND LABELS FOR IDENTIFICATION OF LEAD (Pb) FREE ASSEMBLIES, COMPONENTS, AND DEVICES - SUPERSEDED BY J-STD-609, August 2007Status: Supersededby J-STD-609, August 2007 |
JESD97 | May 2004 |
Committee(s): JC-14.1, JC-14.4 Free download. Registration or login required. |
||
MEASURING WHISKER GROWTH ON TIN AND TIN ALLOY SURFACE FINISHESStatus: Reaffirmed May 2014, September 2019 |
JESD22-A121A | Jul 2008 |
The predominant terminal finishes on electronic components have been Sn-Pb alloys. As the industry moves toward Pb-free components and assembly processes, the predominant terminal finish materials will be pure Sn and alloys of Sn, including Sn-Bi and Sn-Ag Pure Sn and Sn-based alloy electrodeposits and solder-dipped finishes may grow tin whiskers, which could electrically short across component terminals or break off the component and degrade the performance of electrical or mechanical parts. Free download. Registration or login required. |
||
MECHANICAL COMPRESSIVE STATIC STRESS TEST METHOD |
JESD22-B119 | Oct 2018 |
This test method is intended for customers to determine the ability of a device to withstand the mechanical compressive static stress generated when a heat sink is being initially attached to the device, and to help the customer generate design rules for their heat sink design and validate their thermal solution. This test method does not assess the long-term effects of static stress. Committee(s): JC-14.1 Free download. Registration or login required. |
||
MECHANICAL SHOCKStatus: Supersededby JEDEC JESD22-B110B, July 2013 |
JESD22-B104C | Nov 2004 |
This test is intended to determine the suitability of component parts for use in electronic equipment that may be subjected to moderately severe shocks as a result of suddenly applied forces or abrupt changes in motion produced by rough handling, transportation, or field operation. Shock of this type may disturb operating characteristics, particularly if the shock pulses are repetitive. This is a destructive test intended for device qualification. It is normally applicable to cavity-type packages. |