Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # |
Date![]() |
---|---|---|
184 Pin Unbuffered DDR SDRAM DIMM |
MODULE4.5.10 | May 2021 |
Release No.31 This revision contains terminology updates only. JESD21-C Solid State Memory Documents Main Page Free download. Registration or login required. |
||
REPLAY PROTECTED MONOTONIC COUNTER (RPMC) FOR SERIAL FLASH DEVICES |
JESD260 | Apr 2021 |
This document provides the requirements for an additional block called as Replay Protection Monotonic Counter. (RPMC) Replay Protection provides a building block towards providing additional security. This block requires modifications in both a Serial Flash device and Serial Flash Controller. The standard defines new commands for Replay Protected Monotonic Counter operations. A device that supports RPMC can support these new commands as defined in this standard. Committee(s): JC-42.4 Free download. Registration or login required. |
||
SERIAL FLASH RESET SIGNALING PROTOCOL |
JESD252.01 | Apr 2021 |
This standard is intended for use by SoC, ASIC, ASSP, and FPGA developers or vendors interested in incorporating a signaling protocol for hardware resetting the Serial Flash device. In is also intended for use by peripheral developers or vendors interested in providing Serial Flash devices compliant with the standard. This standard defines a signaling protocol that allows the host to reset the slaved Serial Flash device without a dedicated hardware reset pin. Item 1775.06. Committee(s): JC-42.4 Free download. Registration or login required. |
||
NEAR-TERM DRAM LEVEL ROWHAMMER MITIGATION |
JEP300-1 | Mar 2021 |
RAM process node transistor scaling for power and DRAM capacity has made DRAM cells more sensitive to disturbances or transient faults. This sensitivity becomes much worse if external stresses are applied in a meticulously manipulated sequence, such as Rowhammer. Rowhammer related papers have been written outside of JEDEC, but some assumptions used in those papers didn’t explain the problem very clearly or correctly, so the perception for this matter is not precisely understood within the industry. This publication defines the problem and recommends following mitigations to address such concerns across the DRAM industry or academia. Item 1866.01. Committee(s): JC-42 Free download. Registration or login required. |
||
SYSTEM LEVEL ROWHAMMER MITIGATION |
JEP301-1 | Mar 2021 |
A DRAM rowhammer security exploit is a serious threat to cloud service providers, data centers, laptops, smart phones, self-driving cars and IoT devices. Hardware research and development will take time. DRAM components, DRAM DIMMs, System-on-chip (SoC), chipsets and system products have their own design cycle time and overall life time. This publication recommends best practices to mitigate the security risks from rowhammer attacks. Item 1866.02. Committee(s): JC-42 Free download. Registration or login required. |