Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # |
Date![]() |
---|---|---|
USER GUIDE FOR MICROCIRCUIT FAILURE ANALYSIS:Status: RescindedNovember 2004 |
JEB16 | Jul 1970 |
This guide defines generalized procedures for the failure analysis of monolithic integrated microelectronic circuits. Although the generalized procedural steps may apply to all microelectronic circuits, additional analysis steps unique to thin/thick film hybrid devices are not covered. Committee(s): JC-14 Free download. Registration or login required. |
||
SYMBOL AND LABEL FOR ELECTROSTATIC SENSITIVE DEVICESStatus: Reaffirmed October 1988, September 1996, September 2009, May 2018, October 2024 |
JESD471 | Feb 1980 |
This standard will be useful to anyone engaged in handling semiconductor devices and integrated circuits that are subject to permanent damage due to electrostatic potentials. The standard establishes a symbol and label that will gain the attention of those persons who might inflict electrostatic damage to the device. The label which is placed on the lowest practical level of packaging contains the words 'ATTENTION - OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES'. The symbol contained in this label, which may be used on the device itself, shows a hand in a triangle with a bar through it. Formerly known as EIA-471. Free download. Registration or login required. |
||
GUIDELINES FOR THE MEASUREMENT OF THERMAL RESISTANCE OF GaAs FETS: |
JEP110 | Jul 1988 |
This publication is intended for power GaAs FET applications requiring high reliability. An accurate measurement of thermal resistance is extremely important to provide the user with knowledge of the FETs operating temperature so that more accurate life estimates can be made. FET failure mechanisms and failure rates have, in general, an exponential dependence on temperature (which is why temperature-accelerated testing is successful). Because of the exponential relationship of failure rate with temperature, the thermal resistance should be referenced to the hottest part of the FET. Committee(s): JC-14.7 Free download. Registration or login required. |
||
HIGH TEMPERATURE CONTINUITYStatus: Rescinded November 1999 |
JESD22-C100-A | Jan 1990 |
Committee(s): JC-14.1 |
||
DISTRIBUTOR REQUIREMENTS FOR HANDLING ELECTROSTATIC -DISCHARGE SENSITIVE (ESDS) DEVICES: SUPERSEDED BY JESD42, March 1994.Status: Superseded |
JEP108-B | Apr 1991 |
Free download. Registration or login required. |
||
TRANSISTOR, GALLIUM ARSENIDE POWER FET, GENERIC SPECIFICATION:Status: Rescinded |
JES2 | Jul 1992 |
Establishes guideline requirements and quality assurance provisions for gallium arsenide power field-effect transistors (FETs, also know as MESFETs) designed for use in high-reliability space application such as spacecraft communications transmitters. Identifies the electrical parameters, wafer acceptance tests, screening tests, qualification tests, and lot acceptance tests pertinent to power GaAs FETs. Applicable to packaged and chip-carrier parts; portions may not be applicable to unpackaged and unmounted chips. **This document was rescinded on October 17, 2024, but is available for download for reference. purposes. Committee(s): JC-14.7 Free download. Registration or login required. |
||
FAILURE-MECHANISM-DRIVEN RELIABILITY QUALIFICATION OF SILICON DEVICESStatus: Rescinded, November 2004 |
JESD34 | Mar 1993 |
This document applies to the reliability qualification of new or changed silicon devices, and their materials or manufacturing processes. Does not address qualification of product quality or functionality. Provides an alternative to traditional stress-driven qualification. Committee(s): JC-14.2 Free download. Registration or login required. |
||
GUIDELINES FOR USER NOTIFICATION OF PRODUCT/PROCESS CHANGES BY SEMICONDUCTOR SUPPLIERS - SUPERSEDED BY JESD46, August 1997.Status: Rescinded |
JEP117 | Apr 1994 |
Committee(s): JC-14.4 Free download. Registration or login required. |
||
ADDENDUM No. 1 to JESD35, GENERAL GUIDELINES FOR DESIGNING TEST STRUCTURES FOR THE WAFER-LEVEL TESTING OF THIN DIELECTRICSStatus: Rescinded |
JESD35-1 | Sep 1995 |
JESD35-1 was rescinded by the committee in June 2024 and has been superseded by JESD263. This addendum expands the usefulness of the Standard 35 (JESD35) by detailing the various sources of measurement error that could effect the test results obtained by the ramped tests described in JESD35. Each source of error is described and its implications on test structure design is noted. This addendum can be used as a guide when designing test structures for the qualification and characterization of thin oxide reliability, specifically, by implementing accelerated voltage or current ramp tests. Committee(s): JC-14.2 |
||
MOISTURE-INDUCED STRESS SENSITIVITY FOR PLASTIC SURFACE MOUNT DEVICES - SUPERSEDED BY J-STD-020A, April 1999.Status: Rescinded, May 2000 |
JESD22-A112-A | Nov 1995 |
J-STD-020 is now on revision F. Free download. Registration or login required. |
||
STANDARD FOR FAILURE ANALYSIS REPORT FORMAT:Status: Rescinded January 2025 |
JESD38 | Dec 1995 |
This standard is to promote unification of content and format of semiconductor device failure-analysis reports so that reports from diverse laboratories may be easily read, compared, and understood by customers. Additional objectives are to ensure that reports can be easily ready by users, satisfactorily reproduced on copying machines, adequately transmitted by telefax, and conveniently stored in standard filing cabinets. Committee(s): JC-14.4 Free download. Registration or login required. |
||
GUIDELINES FOR THE PACKING, HANDLING, AND REPACKING OF MOISTURE-SENSITIVE COMPONENTS - SUPERSEDED BY J-STD-033, May 1999.Status: RescindedNovember 1999 |
JEP124 | Dec 1995 |
Committee(s): JC-14.4 Free download. Registration or login required. |
||
ADDENDUM No. 2 to JESD35 - TEST CRITERIA FOR THE WAFER-LEVEL TESTING OF THIN DIELECTRICS:Status: Rescinded |
JESD35-2 | Feb 1996 |
JESD35-2 was rescinded by the committee in June 2024 and has been superseded by JESD263. This addendum includes test criteria to supplement JESD35. JESD35 describes procedures developed for estimating the overall integrity of thin oxides in the MOS Integrated Circuit manufacturing industry. Two test procedures are included in JESD35: a Voltage-Ramp (V-Ramp) and a Current-Ramp (J-Ramp). As JESD35 became implemented into production facilities on a variety of test structures and oxide attributes, a need arose to clarify end point determination and point out some of the obstacles that could be overcome by careful characterization of the equipment and test structures. Committee(s): JC-14.2 |
||
FAILURE-MECHANISM-DRIVEN RELIABILITY MONITORING - SUPERSEDED BY EIA/ANSI-659, July 1996.Status: Superseded |
JESD29-A | Jul 1996 |
Committee(s): JC-14.3 Free download. Registration or login required. |
||
GUIDE FOR STANDARD PROBE PAD SIZES AND LAYOUTS FOR WAFER LEVEL ELECTRICAL TESTING:Status: Rescinded September 2021 (JC-14.2-21-182) |
JEP128 | Nov 1996 |
This guide has been replaced by JESD241: September 2021. Committee(s): JC-14.2 |
||
COMPONENT PROBLEM ANALYSIS AND CORRECTIVE ACTION REQUIREMENTS - SUPERSEDED BY EIA-671, November 1996.Status: Superseded |
JESD43 | Nov 1996 |
Committee(s): JC-14.4 Free download. Registration or login required. |
||
QUALITY SYSTEM ASSESSMENT - SUPERSEDED BY ANSI/EIA-670, June 1997.Status: Superseded |
JESD39-A | Jun 1997 |
Committee(s): JC-14.4 Free download. Registration or login required. |
||
NATIONAL ELECTRONIC PROCESS CERTIFICATION STANDARD; GOVERNMENT CONTRACTORS:Removed: August 25, 2003 |
EIA599-A | Jan 1998 |
Due to notification from the JC-14.4 subcommittee that the material contained in EIA599 has been replaced by the ISO 9000 series, the JEDEC Board of Directors, at its August 2003 meeting, approved to remove this standard from the JEDEC Free Download Area. Committee(s): JC-14.4 |
||
GUIDELINES FOR PREPARING CUSTOMER-SUPPLIED BACKGROUND INFORMATION RELATING TO A SEMICONDUCTOR-DEVICE FAILURE ANALYSIS:Status: Reaffirmed January 2025 |
JEP134 | Sep 1998 |
The purpose of this Guideline is to provide a vehicle for acquiring and transmitting the necessary information in a concise, organized, and consistent format. Included in the Guideline is a sample form that facilitates transferring the maximum amount of background data to the failure analyst in a readily interpretable format. Immediate availability of this key information assists that analyst in completing a timely and accurate failure analysis. Committee(s): JC-14.4 Free download. Registration or login required. |
||
SYMBOL AND LABELS FOR MOISTURE-SENSITIVE DEVICES - SUPERSEDED BY J-STD-033, April 2018.Status: Rescinded, November 2018 |
JEP113B | May 1999 |
Certain PSMC (Plastic Surface-mount Components) are subject to permanent damage due to moisture-induced failures encountered during high-temperature surface-mount processing unless appropriate precautions are observed. The purpose of this publication is to provide a distinctive symbol and labels to be used to identify those devices that require special packing and handling precautions. Committee(s): JC-14.1 Free download. Registration or login required. |
||
SIGNATURE ANALYSIS:Status: Reaffirmed January 2025 |
JEP136 | Jul 1999 |
Signature Analysis is a method to reduce the number of comprehensive physical failure analyses by the application of statistical inference techniques. The purpose of this document is to promote a common definition of Signature Analysis by inference, using the same statistical techniques, and to recognize that it is formal means of doing failure analysis.
Committee(s): JC-14.4 Free download. Registration or login required. |
||
SUPERSEDED BY THE TEST METHODS INDICATED BY 'JESD22-'Status: Superseded |
JESD22- B | Jan 2000 |
A complete set of test methods can be obtained from Global Engineering Documents Committee(s): JC-14.1 |
||
GUIDELINE FOR CONSTANT TEMPERATURE AGING TO CHARACTERIZE ALUMINUM INTERCONNECT METALLIZATIONS FOR STRESS-INDUCED VOIDING:Status: ReaffirmedOctober 2012 |
JEP139 | Dec 2000 |
This document describes a constant temperature (isothermal) aging method for testing aluminum (Al) metallization test structures on microelectronics wafers for susceptibility to stress-induced voiding. This method is valid for metallization/dielectric systems in which the dielectric is deposited onto the metallization at a temperature considerably above the intended use temperature, and above or equal to the deposition temperature of the metal. Although this is a wafer test, it is not a fast (less than 5 minutes per probe) test. It is intended to be used for lifetime prediction and failure analysis, not for production Go-NoGo lot checking. Committee(s): JC-14.2 Free download. Registration or login required. |
||
PROCEDURE FOR WAFER-LEVEL-TESTING OF THIN DIELECTRICS:Status: Rescinded |
JESD35A | Apr 2001 |
JESD35A was rescinded by the committee in June 2024 and has been superseded by JESD263. The revised JESD35 is intended for use in the MOS Integrated Circuit manufacturing industry. It describes procedures developed for estimating the overall integrity and reliability of thin gate oxides. Three basic test procedures are described, the Voltage-Ramp (V-Ramp), the Current-Ramp (J-Ramp) and the new Constant Current (Bounded J-Ramp) test. Each test is designed for simplicity, speed and ease of use. The standard has been updated to include breakdown criteria that are more robust in detecting breakdown in thinner gate oxides that may not experience hard thermal breakdown. Committee(s): JC-14.2 |
||
Addendum No. 1 to JESD28, N-CHANNEL MOSFET HOT CARRIER DATA ANALYSIS |
JESD28-1 | Sep 2001 |
This addendum provides data analysis examples useful in analyzing MOSFET n-channel hot-carrier-induced degradation data. This addendum to JESD28 (Hot carrier n-channel testing standard) suggests hot-carrier data analysis techniques. Committee(s): JC-14.2 Free download. Registration or login required. |
||
A PROCEDURE FOR MEASURING N-CHANNEL MOSFET HOT-CARRIER-INDUCED DEGRADATION UNDER DC STRESS: |
JESD28-A | Dec 2001 |
This document describes an accelerated test for measuring the hot-carrier-induced degradation of a single n-channel MOSFET using dc bias. The purpose of this document is to specify a minimum set of measurements so that valid comparisons can be made between different technologies, IC processes, and process variations in a simple, consistent and controlled way. The measurements specified should be viewed as a starting point in the characterization and benchmarking of the transistor manufacturing process. Committee(s): JC-14.2 Free download. Registration or login required. |
||
OUTLIER IDENTIFICATION AND MANAGEMENT SYSTEM FOR ELECTRONIC COMPONENTS, RESCINDED January 2009. Replaced by JESD50.Status: RescindedJanuary 2009 |
JESD62-A | May 2002 |
Relevant JESD62 content has been consolidated into JESD50B, published October 2008 -Special Requirments for Maverick Product Elimination-. Committee(s): JC-14.3 Free download. Registration or login required. |
||
BEADED THERMOCOUPLE TEMPERATURE MEASUREMENT OF SEMICONDUCTOR PACKAGESStatus: ReaffirmedJune 2006, September 2011, January 2015 |
JEP140 | Jun 2002 |
The beaded thermocouple temperature measurement guideline provides a procedure to accurately and consistently measure the temperature of semiconductor packages during exposure to thermal excursions. The guideline applications can include, but not limited to, temperature profile measurement in reliability test chambers and solder reflow operations that are associated with component assembly to printed wiring boards. Free download. Registration or login required. |
||
SOLDERABILITY TESTS FOR COMPONENT LEADS, TERMINATIONS, LUGS, TERMINALS AND WIRES:Removed 01/21/04 Release Number: B |
J-STD-002 | Feb 2003 |
At the request of IPC, J-STD-002B has been removed from the free download area. In its place, JEDEC's Test Method, JESD22-B102, Solderability, which includes lead-free, was made available until it was replaced by J-STD-002D.
Any revision to J-STD-002 will no longer be available for free to the industry on the JEDEC website. However, the document is available to the JEDEC formulating Committee members, in the Members Area.
If you are not a JEDEC member you may wish to try the IPC website or one of the resellers listed at: http://www.jedec.org/standards-document |
||
PHYSICAL DIMENSION:Status: ReaffirmedJune 2006, January 2016, September 2021 |
JESD22-B100B | Jun 2003 |
The standard provides a method for determining whether the external physical dimensions of the device are in accordance with the applicable procurement document. This revision includes a change in details to be specified by the procurement document. Committee(s): JC-14.1 Free download. Registration or login required. |
||
A PROCEDURE FOR EXECUTING SWEAT:Status: Reaffirmed October 2012, September 2018 |
JEP119A | Aug 2003 |
This document describes an algorithm for performing the Standard Wafer Level Electromigration Accelerated Test (SWEAT) method with computer controlled instrumentation. The algorithm requires a separate iterative technique (not provided) to calculate the force current for a given target time to failure. This document does not specify what test structure to use with this procedure. However, users of this algorithm report its effectiveness on both straight-lines and via-terminated test structures. Some test-structures design features are provided in JESD87 and in ASTM 1259M - 96. Committee(s): JC-14.2 Free download. Registration or login required. |
||
PROCEDURE FOR CHARACTERIZING TIME-DEPENDENT DIELECTRIC BREAKDOWN OF ULTRA-THIN GATE DIELECTRICS:Status: Rescinded |
JESD92 | Aug 2003 |
JESD92 was rescinded by the committee in June 2024 and has been superseded by JESD263. This document defines a constant voltage stress test procedure for characterizing time-dependent dielectric breakdown or 'wear-out' of thin gate dielectrics used in integrated circuit technologies. The test is designed to obtain voltage and temperature acceleration parameters required to estimate oxide life at use conditions. The test procedure includes sophisticated techniques to detect breakdown in ultra-thin films that typically exhibit large tunneling currents and soft or noisy breakdown characteristics. This document includes an annex that discusses test structure design, methods to determine the oxide electric field in ultra-thin films, statistical models, extrapolation models, and example failure-rate calculations |
||
STANDARD METHOD FOR MEASURING AND USING THE TEMPERATURE COEFFICIENT OF RESISTANCE TO DETERMINE THE TEMPERATURE OF A METALLIZATION LINE:Status: Reaffirmed October 2012, September 2018 |
JESD33B | Feb 2004 |
This newly revised test method provides a procedure for measuring the temperature coefficient of resistance, TCR(T), of thin-film metallizations used in microelectronic circuits and devices. Procedures are also provided to use the TCR(T) to determine the temperature of a metallization line under Joule-heating conditions and to determine the ambient temperature where the metallization line is used as a temperature sensor. Originally, the method was intended only for aluminum-based metallizations and for other metallizations that satisfy the linear dependence and stability stipulations of the method. The method has been revised to make it explicitly applicable to copper-based metallizations, as well, and at temperatures beyond where the resistivity of copper is no longer linearly dependent on temperature (beyond approximately 200 °C). Using the TCR(T) measured for copper in the linear-dependent region, a factor is used to correct the calculated temperature at these higher temperatures. Committee(s): JC-14.2 Free download. Registration or login required. |
||
MARKING, SYMBOLS, AND LABELS FOR IDENTIFICATION OF LEAD (Pb) FREE ASSEMBLIES, COMPONENTS, AND DEVICES - SUPERSEDED BY J-STD-609, August 2007Status: Supersededby J-STD-609, August 2007 |
JESD97 | May 2004 |
Committee(s): JC-14.1, JC-14.4 Free download. Registration or login required. |
||
IPC/JEDEC-9702: MONOTONIC BEND CHARACTERIZATION OF BOARD-LEVEL INTERCONNECTS (IPC/JEDEC-9702) |
JS9702 | Jun 2004 |
This publication specifies a common method of establishing the fracture resistance of board-level device interconnects to flexural loading during non-cyclic board assembly and test operations. Monotonic bend test qualification pass/fail requirements are typically specific to each device application and are outside the scope of this document. This version contains Addendum 1, May 2015, reposted 8/15/2016. Committee(s): JC-14.1 Free download. Registration or login required. |
||
A PROCEDURE FOR MEASURING P-CHANNEL MOSFET HOT-CARRIER-INDUCED DEGRADATION AT MAXIMUM GATE CURRENT UNDER DC STRESS: |
JESD60A | Sep 2004 |
This method establishes a standard procedure for accelerated testing of the hot-carrier-induced change of a p-channel MOSFET. The objective is to provide a minimum set of measurements so that accurate comparisons can be made between different technologies. The measurements specified should be viewed as a starting pint in the characterization and benchmarking of the trasistor manufacturing process. Committee(s): JC-14.2 Free download. Registration or login required. |
||
A PROCEDURE FOR MEASURING P-CHANNEL MOSFET NEGATIVE BIAS TEMPERATURE INSTABILITIESStatus: Rescinded September 2021 (JC-14.2-21-183) |
JESD90 | Nov 2004 |
This document hasbeen replaced by JESD241, September 2021. |
||
MECHANICAL SHOCKStatus: Supersededby JEDEC JESD22-B110B, July 2013 |
JESD22-B104C | Nov 2004 |
This test is intended to determine the suitability of component parts for use in electronic equipment that may be subjected to moderately severe shocks as a result of suddenly applied forces or abrupt changes in motion produced by rough handling, transportation, or field operation. Shock of this type may disturb operating characteristics, particularly if the shock pulses are repetitive. This is a destructive test intended for device qualification. It is normally applicable to cavity-type packages. |
||
Material Composition Declaration Guide for Electronic Products |
JIG101 | Jun 2005 |
The purpose of this guide establishes the materials and substances to be disclosed by suppliers when those materials and substances are present in products and subparts that are incorporated into EEE. It benefits suppliers and their commercial customers by providing consistency and efficiency to the material declaration process. It promotes the development of consistent data exchange formats and tools that will facilitate and improve data transfer along the entire global supply chain. Committee(s): JC-14 |
||
CURRENT TIN WHISKERS THEORY AND MITIGATION PRACTICES GUIDELINEStatus: Reaffirmed February 2023 |
JP002 | Mar 2006 |
This document will provide insight into the theory behind tin whisker formation as it is known today and, based on this knowledge, potential mitigation practices that may delay the onset of, or prevent tin whisker formation. The potential effectiveness of various mitigation practices will also be briefly discussed. References behind each of the theories and mitigation practices are provided. Free download. Registration or login required. |
||
METHOD FOR CHARACTERIZING THE ELECTROMIGRATION FAILURE TIME DISTRIBUTION OF INTERCONNECTS UNDER CONSTANT-CURRENT AND TEMPERATURE STRESSStatus: Reaffirmed September 2018 |
JESD202 | Mar 2006 |
This is an accelerated stress test method for determining sample estimates and their confidence limits of the median-time-to-failure, sigma, and early percentile of a log-Normal distribution, which are used to characterize the electromigration failure-time distribution of equivalent metal lines subjected to a constant current-density and temperature stress. Failure is defined as some pre-selected fractional increase in the resistance of the line under test. Analysis procedures are provided to analyze complete and singly, right-censored failure-time data. Sample calculations for complete and right-censored data are provided in Annex A. The analyses are not intended for the case when the failure distribution cannot be characterized by a single log-Normal distribution. Free download. Registration or login required. |
||
EARLY LIFE FAILURE RATE CALCULATION PROCEDURE FOR SEMICONDUCTOR COMPONENTS:Status: Reaffirmed January 2014, September 2019 |
JESD74A | Feb 2007 |
This standard defines methods for calculating the early life failure rate of a product, using accelerated testing, whose failure rate is constant or decreasing over time. For technologies where there is adequate field failure data, alternative methods may be used to establish the early life failure rate. The purpose of this standard is to define a procedure for performing measurement and calculation of early life failure rates. Projections can be used to compare reliability performance with objectives, provide line feedback, support service cost estimates, and set product test and screen strategies to ensure that the ELFR meets customers' requirements. Free download. Registration or login required. |
||
ISOTHERMAL ELECTROMIGRATION TEST PROCEDURE:Status: Reaffirmed September 2018 |
JESD61A.01 | Oct 2007 |
This standard describes an algorithm for the execution of the isothermal test, using computer-controlled instrumentation. The primary use of this test is for the monitoring of microelectronic metallization lines at wafer level (1) in process development, to evaluate process options, (2) in manufacturing, to monitor metallization reliability and (3) to monitor/evaluate process equipment. While it is developed as a fast WLR test, it can also be an effective tool for complementing the reliability data obtained through the standard package level electromigration test. Free download. Registration or login required. |
||
SOLDERABILITYStatus: Rescinded 2014, this document has been replaced by J-STD-002D. |
JESD22-B102E | Oct 2007 |
This test method provides optional conditions for preconditioning and soldering for the purpose of assessing the solderability of device package terminations. It provides procedures for dip & look solderability testing of through hole, axial and surface mount devices and a surface mount process simulation test for surface mount packages. The purpose of this test method is to provide a means of determining the solderability of device package terminations that are intended to be joined to another surface using lead (Pb) containing or Pb-free solder for the attachment. Committee(s): JC-14.1 |
||
MEASURING WHISKER GROWTH ON TIN AND TIN ALLOY SURFACE FINISHESStatus: Reaffirmed May 2014, September 2019 |
JESD22-A121A | Jul 2008 |
The predominant terminal finishes on electronic components have been Sn-Pb alloys. As the industry moves toward Pb-free components and assembly processes, the predominant terminal finish materials will be pure Sn and alloys of Sn, including Sn-Bi and Sn-Ag Pure Sn and Sn-based alloy electrodeposits and solder-dipped finishes may grow tin whiskers, which could electrically short across component terminals or break off the component and degrade the performance of electrical or mechanical parts. Free download. Registration or login required. |
||
ENVIRONMENTAL ACCEPTANCE REQUIREMENTS FOR TIN WHISKER SUSCEPTIBILITY OF TIN AND TIN ALLOY SURFACE FINISHEDStatus: Reaffirmed May 2014, January 2020 |
JESD201A | Sep 2008 |
The methodology described in this document is applicable for environmental acceptance testing of tin based surface finishes and mitigation practices for tin whiskers. This methodology may not be sufficient for applications with special requirements, (i.e., military, aerospace, etc.). Additional requirements may be specified in the appropriate requirements (procurement) documentation. Free download. Registration or login required. |
||
ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING HUMAN BODY MODEL (HBM)Status: Supersededby ANSI/ESDA/JEDEC JS-001, April 2010. |
JESD22-A114F | Dec 2008 |
This test method establishes a standard procedure for testing and classifying microcircuits according to their susceptibility to damage or degradation by exposure to a defined electrostatic Human Body Model (HBM) discharge (ESD). The objective is to provide reliable, repeatable HBM ESD test results so that accurate classifications can be performed. Committee(s): JC-14.1 |
||
IPC/JEDEC-9703: MECHANICAL SHOCK TEST GUIDELINE FOR SOLDER JOINT RELIABILITYStatus: Reaffirmed May 2014, May 2019 |
JS9703 | Mar 2009 |
This document establishes mechanical shock test guidelines for assessing solder joint reliability of Printed Circuit Board (PCB) assemblies from system to component level. Committee(s): JC-14.1 Free download. Registration or login required. |
||
ELECTRICAL PARAMETERS ASSESSMENTStatus: Reaffirmed May 2014, September 2020 |
JESD86A | Oct 2009 |
This standard is intended to describe various methods for obtaining electrical variate data on devices currently produced on the manufacturing and testing process to be qualified. The intent is to assess the device's capability to function within the specification parameters over time and the application environment (operating range of temperature, voltage, humidity, input/output levels, noise, power supply stability etc.). Committee(s): JC-14.3 Free download. Registration or login required. |
||
3D CHIP STACK WITH THROUGH-SILICON VIAS (TSVS): Identifying, Evaluating and Understanding Reliability Interactions |
JEP158 | Nov 2009 |
To increase device bandwidth, reduce power and shrink form factor, microelectronics manufacturers are implementing three dimensional (3D) chip stacking using through silicon vias (TSVs). Chip stacking with TSVs combines silicon and packaging technologies. As a result, these new structures have unique reliability requirements. This document is a guideline that describes how to evaluate the reliability of 3D TSV silicon assemblies. Free download. Registration or login required. |
||
COPLANARITY TEST FOR SURFACE-MOUNT SEMICONDUCTOR DEVICESStatus: Reaffirmed February 2023 |
JESD22-B108B | Sep 2010 |
The purpose of this test is to measure the deviation of the terminals (leads or solder balls) from coplanarity at room temperature for surface-mount semiconductor devices. This test method is applicable for inspection and device characterization. If package warpage or coplanarity is to be characterized at reflow soldering temperatures, then JESD22-B112 should be used. Free download. Registration or login required. |
||
ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING MACHINE MODEL (MM)This document is inactive as of September 2016 |
JESD22-A115C | Nov 2010 |
JESD22-A115 is a reference document; it is not a requirement per JESD47 (Stress Test Driven Qualification of Integrated Circuits). Machine Model (MM) as described in JESD22-A115 should not be used as a requirement for integrated circuit ESD qualification. Only human-body model (HBM) and charged-device model (CDM) are the necessary ESD qualification test methods as specified in JESD47. Refer to JEP172: Discontinuing Use of the Machine Model for Device ESD Qualification for more information. Committee(s): JC-14.1 |
||
SYSTEM LEVEL ESD PART 1: COMMON MISCONCEPTIONS AND RECOMMENDED BASIC APPROACHESStatus: ReaffirmedApril 2023 |
JEP161 | Jan 2011 |
This report is the first part of a two part document. Part I will primarily address hard failures characterized by physical damage to a system (failure category d as classified by IEC 61000-4-2). Soft failures, in which the system’s operation is upset without physical damage, are also critical and predominant in many cases. Free download. Registration or login required. |
||
MARKING PERMANENCYStatus: Reaffirmed August 2024 |
JESD22-B107D | Mar 2011 |
This test method provides two tests for determining the marking permanency of ink marked integrated circuits. A new non-destructive tape test method is introduced to quickly determine marking integrity. The test method also specifies a resistance to solvents method based upon MIL Std 883 Method 2015. Free download. Registration or login required. |
||
HERMETICITYStatus: Reaffirmed September 2017 |
JESD22-A109B | Nov 2011 |
Testing for hermeticity on commercial product is not normally done on standard molded devices that are not hermetic. Commercial product that this test method applies to has a construction that produces a hermetic package; examples of this are ceramic and metal packages. Most of these tests are controlled and updated in the military standards, the two standards that apply are MIL-STD-750 for discretes, & MIL-STD-883 for microcircuits. The test within these standards can be used for all package types. Within these standards the tests are similar; MIL-STD-750 Test Method 1071 Hermetic Seal is recommended for any commercial hermetic requirements. For MIL-STD-883 the applicable test method is 1014 Seal. Committee(s): JC-14.1 Free download. Registration or login required. |
||
PRODUCT DISCONTINUANCEStatus: Supersededby J-STD-048, November 2014 |
JESD48C | Dec 2011 |
This standard establishes the requirements for timely customer notification of planned product discontinuance, which will assist customers in managing end-of-life supply, or to transition on-going requirements to alternate products. |
||
CUSTOMER NOTIFICATION OF PRODUCT/PROCESS CHANGES BY SOLID-STATE SUPPLIERSStatus: SupersededBy J-STD-046, July 2016 |
JESD46D | Dec 2011 |
This standard establishes procedures to notify customers of semiconductor product and process changes. Requirements include: documentation; procedures for classification, notification and customer response; content; and records. Documentation of a suppliers change notification system should set clear and understandable expectations for both the originators of the change and their end customers. |
||
IPC/JEDEC-9704A: PRINTED WIRING BOARD (PWB) STRAIN GAGE TEST GUIDELINE |
JS9704A | Jan 2012 |
This document describes specific guidelines for strain gage testing for Printed Wiring Board (PWB)assemblies. The suggested procedures enables board manufacturers to conduct required strain gage testing independently, and provides a quantitative method for measuring board flexure, and assessing risk levels. The topics covered include: Test setup and equipment; requirements; Strain measurement; Report format Free download. Registration or login required. |
||
RF BIASED LIFE (RFBL) TESTStatus: Reaffirmed October 2024 |
JESD226 | Jan 2013 |
This stress method is used to determine the effects of RF bias conditions and temperature on Power Amplifier Modules (PAMs) over time. These conditions are intended to simulate the devices’ operating condition in an accelerated way, and they are expected to be applied primarily for device qualification and reliability monitoring. The purpose of this test is for use to determine the effects of nominal DC and RF bias conditions and high temperature on Power Amplifier Modules (PAMs) over time. It simulates the devices’ operating condition in an accelerated way, and is primarily intended for device qualification testing and reliability monitoring which stresses all of the modules’ thermal and electrical failure mechanisms anticipated in typical use. Committee(s): JC-14.7 Free download. Registration or login required. |
||
SALT ATMOSPHEREStatus: Reaffirmed September 2020 |
JESD22-A107C | Apr 2013 |
Salt atmosphere is a destructive, accelerated stress that simulates the effects of severe seacoast atmosphere on all exposed surfaces. Such stressing and post-stress testing determine the resistance of solid-state devices to corrosion and may be performed on commercial and industrial product in molded or hermetic packages. Free download. Registration or login required. |