Global Standards for the Microelectronics Industry
Standards & Documents Search
Title![]() |
Document # | Date |
---|---|---|
ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING – REPORTING ESD WITHSTAND LEVELS ON DATASHEETS |
JEP178 | Apr 2021 |
This document is intended to guide device manufacturers in developing datasheets and to device customers in understanding datasheet entries. Committee(s): JC-14.3 Free download. Registration or login required. |
||
ENVIRONMENTAL ACCEPTANCE REQUIREMENTS FOR TIN WHISKER SUSCEPTIBILITY OF TIN AND TIN ALLOY SURFACE FINISHEDStatus: Reaffirmed May 2014, January 2020 |
JESD201A | Sep 2008 |
The methodology described in this document is applicable for environmental acceptance testing of tin based surface finishes and mitigation practices for tin whiskers. This methodology may not be sufficient for applications with special requirements, (i.e., military, aerospace, etc.). Additional requirements may be specified in the appropriate requirements (procurement) documentation. Free download. Registration or login required. |
||
ESDA/JEDEC JOINT STANDARD FOR ELECTROSTATIC DISCHARGE SENSITIVITY TESTING – CHARGED DEVICE MODEL (CDM) – DEVICE LEVEL |
JS-002-2022 | Jun 2023 |
This standard establishes the procedure for testing, evaluating, and classifying devices and microcircuits according to their susceptibility (sensitivity) to damage or degradation by exposure to a defined field-induced charged device model (CDM) electrostatic discharge (ESD). All packaged semiconductor devices, thin film circuits, surface acoustic wave (SAW) devices, opto-electronic devices, hybrid integrated circuits (HICs), and multi-chip modules (MCMs) containing any of these devices are to be evaluated according to this standard. This test method combines the main features of JEDEC JESD22-C101 and ANSI/ESD S5.3.1. Free download. Registration or login required. |
||
EVALUATION PROCEDURE FOR DETERMINING CAPABILITY TO BOTTOM SIDE BOARD ATTACH BY FULL BODY SOLDER IMMERSION OF SMALL SURFACE MOUNT SOLID STATE DEVICES |
JESD22-A111B | Mar 2018 |
The purpose of this test method is to identify the potential wave solder classification level of small plastic Surface Mount Devices (SMDs) that are sensitive to moisture-induced stress so that they can be properly packaged, stored, and handled to avoid subsequent mechanical damage during the assembly wave solder attachment and/or repair operations. This test method also provides a reliability preconditioning sequence for small SMDs that are wave soldered using full body immersion. This test method, may be used by users to determine what classification level should be used for initial board level reliability qualification. Free download. Registration or login required. |
||
EXTERNAL VISUAL |
JESD22-B101D | Apr 2022 |
External visual inspection is an examination of the external surfaces, construction, marking, and workmanship of a finished package or component. External visual is a noninvasive and nondestructive test. It is functional for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
FAILURE MECHANISMS AND MODELS FOR SEMICONDUCTOR DEVICES |
JEP122H | Sep 2016 |
This publication provides a list of failure mechanisms and their associated activation energies or acceleration factors that may be used in making system failure rate estimations when the only available data is based on tests performed at accelerated stress test conditions. The method to be used is the Sum-of-the-Failure-Rates method. This publication also provides guidance in the selection of reliability modeling parameters, namely functional form, apparent thermal activation energy values and sensitivity to stresses such as power supply voltage, substrate current, current density, gate voltage, relative humidity, temperature cycling range, mobile ion concentration, etc. Committee(s): JC-14.2 Available for purchase: $163.00 Add to Cart Paying JEDEC Members may login for free access. |
||
FAILURE-MECHANISM-DRIVEN RELIABILITY MONITORINGStatus: Reaffirmed June 2011, May 2022 |
JESD659C | Apr 2017 |
This method establishes requirements for application of Statistical Reliability Monitoring 'SRM' technology to monitor and improve the reliability of electronic components and subassemblies. The standard also describes the condition under with a monitor may be replaced or eliminated. Formerly known as EIA-659, that superseded JESD29-A (July 1996). Became JESD659 after revision, September 1999. Free download. Registration or login required. |
||
FAILURE-MECHANISM-DRIVEN RELIABILITY MONITORING - SUPERSEDED BY EIA/ANSI-659, July 1996.Status: Superseded |
JESD29-A | Jul 1996 |
Committee(s): JC-14.3 Free download. Registration or login required. |
||
FAILURE-MECHANISM-DRIVEN RELIABILITY QUALIFICATION OF SILICON DEVICESStatus: Rescinded, November 2004 |
JESD34 | Mar 1993 |
This document applies to the reliability qualification of new or changed silicon devices, and their materials or manufacturing processes. Does not address qualification of product quality or functionality. Provides an alternative to traditional stress-driven qualification. Committee(s): JC-14.2 Free download. Registration or login required. |
||
FIELD-INDUCED CHARGED-DEVICE MODEL TEST METHOD FOR ELECTROSTATIC DISCHARGE WITHSTAND THRESHOLDS OF MICROELECTRONIC COMPONENTSStatus: Rescinded February 2020 |
JESD22-C101F | Oct 2013 |
The material in this test method has been superseded by JS-002-2018, published January 2019, which in turn has been superseded by JS-002-2022, published January 2023. |
||
FLIP CHIP TENSILE PULL |
JESD22-B109C | Mar 2021 |
The Flip Chip Tensile Pull Test Method is performed to determine the fracture mode and strength of the solder bump interconnection between the flip chip die and the substrate. It should be used to assess the consistency of the chip join process. This test method is a destructive test. Committee(s): JC-14.1 Free download. Registration or login required. |
||
FOUNDRY PROCESS QUALIFICATION GUIDELINES - BACKEND OF LIFE (Wafer Fabrication Manufacturing Sites) |
JEP001-1A | Sep 2018 |
This document describes backend-level test and data methods for the qualification of semiconductor technologies. It does not give pass or fail values or recommend specific test equipment, test structures or test algorithms. Wherever possible, it references applicable JEDEC such as JESD47 or other widely accepted standards for requirements documentation. Committee(s): JC-14.2 Free download. Registration or login required. |
||
FOUNDRY PROCESS QUALIFICATION GUIDELINES - FRONT END TRANSISTOR LEVEL (Wafer Fabrication Manufacturing Sites) |
JEP001-2A | Sep 2018 |
This document describes transistor-level test and data methods for the qualification of semiconductor technologies. It does not give pass or fail values or recommend specific test equipment, test structures or test algorithms. Wherever possible, it references applicable JEDEC such as JESD47 or other widely accepted standards for requirements documentation. Committee(s): JC-14.2 Free download. Registration or login required. |
||
Foundry Process Qualification Guidelines – Technology Qualification Vehicle Testing (Wafer Fabrication Manufacturing Sites) |
JEP001-3B | Sep 2024 |
The publication provides methodologies for measurements to qualify a new semiconductor wafer process. Free download. Registration or login required. |
||
Gate Dielectric Breakdown |
JESD263 | Mar 2024 |
This document describes procedures developed for estimating the overall integrity of gate dielectrics. JESD263 supersedes these other 4 standards: JESD35A, JESD35-1 ADDENDUM, JESD35-2 and JESD92. Free download. Registration or login required. |
||
GENERAL REQUIREMENTS FOR DISTRIBUTORS OF COMMERCIAL AND MILITARY SEMICONDUCTOR DEVICES |
JESD31F | Aug 2021 |
This standard identifies the general requirements for Distributors that supply Commercial and Military products. This standard applies to all discrete semiconductors, integrated circuits and Hybrids, whether packaged or in wafer/die form, manufactured by all Manufacturers. The requirements defined within this document are only applicable to products for which ownership remains with the Distributor or Manufacturer. Free download. Registration or login required. |
||
GUIDE FOR STANDARD PROBE PAD SIZES AND LAYOUTS FOR WAFER LEVEL ELECTRICAL TESTING:Status: Rescinded September 2021 (JC-14.2-21-182) |
JEP128 | Nov 1996 |
This guide has been replaced by JESD241: September 2021. Committee(s): JC-14.2 |
||
GUIDE TO STANDARDS AND PUBLICATIONS RELATING TO QUALITY AND RELIABILITY OF ELECTRONIC HARDWARE |
JEP70C | Oct 2013 |
This document gathers and organizes common standards and publications relating to quality processes and methods relating to the solid-state, microelectronics, and associated industries. This is intended to facilitate access to the applicable documents when working with electronic hardware. This will have a positive effect on quality and reliability as users gain more access to proper methods in designing, producing, and testing parts. Committee(s): JC-14.4 Free download. Registration or login required. |
||
Guideline for Characterizing Solder Bump Electromigration Under Constant Current and Temperature Stress |
JEP154A | Mar 2024 |
This publication describes a method to test the electromigration susceptibility of solder bumps, including other types of bumps, such as solder capped copper pillars, used in flip-chip packages. Free download. Registration or login required. |
||
GUIDELINE FOR CONSTANT TEMPERATURE AGING TO CHARACTERIZE ALUMINUM INTERCONNECT METALLIZATIONS FOR STRESS-INDUCED VOIDING:Status: ReaffirmedOctober 2012 |
JEP139 | Dec 2000 |
This document describes a constant temperature (isothermal) aging method for testing aluminum (Al) metallization test structures on microelectronics wafers for susceptibility to stress-induced voiding. This method is valid for metallization/dielectric systems in which the dielectric is deposited onto the metallization at a temperature considerably above the intended use temperature, and above or equal to the deposition temperature of the metal. Although this is a wafer test, it is not a fast (less than 5 minutes per probe) test. It is intended to be used for lifetime prediction and failure analysis, not for production Go-NoGo lot checking. Committee(s): JC-14.2 Free download. Registration or login required. |
||
GUIDELINES FOR GaAs MMIC PHEMT/MESFET AND HBT RELIABILITY ACCELERATED LIFE TESTING |
JEP118A | Dec 2018 |
These guidelines apply to GaAs Monolithic Microwave Integrated Circuits (MMICs) and their individual component building blocks, such as GaAs Metal-Semiconductor Field Effect Transistors (MESFETs), Pseudomorphic High Electron Mobility Transistors (PHEMTs), Heterojunction Bipolar Transistors (HBTs), resistors, and capacitors. While the procedure described in this document may be applied to other semiconductor technologies, especially those used in RF and microwave frequency analog applications, it is primarily intended for technologies based on GaAs and related III-V material systems (InP, AlGaAs, InGaAs, InGaP, GaN, etc). Committee(s): JC-14.7 Free download. Registration or login required. |
||
Guidelines for Packing and Labeling of Integrated Circuits in Unit Container Packing (Tubes, Trays, and Tape and Reel) |
JEP130C | Feb 2023 |
This document establishes guidelines for integrated circuit unit container and the next level (intermediate) container packing and labeling. The guidelines include tube/rail standardization, intermediate packing, date codes, tube labeling, intermediate container and shipping labels, and standardize tube quantities. Future revisions of this document will also include tray and reel guidelines. The objective of this publication is to promote the standardization of practices between manufacturers and distributors resulting in improved efficiency, profitability, and product quality. Free download. Registration or login required. |
||
GUIDELINES FOR PREPARING CUSTOMER-SUPPLIED BACKGROUND INFORMATION RELATING TO A SEMICONDUCTOR-DEVICE FAILURE ANALYSIS:Status: Reaffirmed January 2025 |
JEP134 | Sep 1998 |
The purpose of this Guideline is to provide a vehicle for acquiring and transmitting the necessary information in a concise, organized, and consistent format. Included in the Guideline is a sample form that facilitates transferring the maximum amount of background data to the failure analyst in a readily interpretable format. Immediate availability of this key information assists that analyst in completing a timely and accurate failure analysis. Committee(s): JC-14.4 Free download. Registration or login required. |
||
Guidelines for Supplier Performance Rating |
JEP146B | May 2023 |
This publication establishes guidelines and provides examples by which customers can measure their suppliers based on mutually agreed upon objective criteria. Free download. Registration or login required. |
||
GUIDELINES FOR THE MEASUREMENT OF THERMAL RESISTANCE OF GaAs FETS: |
JEP110 | Jul 1988 |
This publication is intended for power GaAs FET applications requiring high reliability. An accurate measurement of thermal resistance is extremely important to provide the user with knowledge of the FETs operating temperature so that more accurate life estimates can be made. FET failure mechanisms and failure rates have, in general, an exponential dependence on temperature (which is why temperature-accelerated testing is successful). Because of the exponential relationship of failure rate with temperature, the thermal resistance should be referenced to the hottest part of the FET. Committee(s): JC-14.7 Free download. Registration or login required. |
||
GUIDELINES FOR THE PACKING, HANDLING, AND REPACKING OF MOISTURE-SENSITIVE COMPONENTS - SUPERSEDED BY J-STD-033, May 1999.Status: RescindedNovember 1999 |
JEP124 | Dec 1995 |
Committee(s): JC-14.4 Free download. Registration or login required. |
||
GUIDELINES FOR USER NOTIFICATION OF PRODUCT/PROCESS CHANGES BY SEMICONDUCTOR SUPPLIERS - SUPERSEDED BY JESD46, August 1997.Status: Rescinded |
JEP117 | Apr 1994 |
Committee(s): JC-14.4 Free download. Registration or login required. |
||
Guidelines for Visual Inspection and Control of Flip Chip Type Packages (FCxGA) |
JEP170A | Jun 2024 |
This document provides guidelines for visual inspection and control that ensures quality and reliability of flip chip packaged devices. Free download. Registration or login required. |
||
HERMETICITYStatus: Reaffirmed September 2017 |
JESD22-A109B | Nov 2011 |
Testing for hermeticity on commercial product is not normally done on standard molded devices that are not hermetic. Commercial product that this test method applies to has a construction that produces a hermetic package; examples of this are ceramic and metal packages. Most of these tests are controlled and updated in the military standards, the two standards that apply are MIL-STD-750 for discretes, & MIL-STD-883 for microcircuits. The test within these standards can be used for all package types. Within these standards the tests are similar; MIL-STD-750 Test Method 1071 Hermetic Seal is recommended for any commercial hermetic requirements. For MIL-STD-883 the applicable test method is 1014 Seal. Committee(s): JC-14.1 Free download. Registration or login required. |
||
HIGH TEMPERATURE CONTINUITYStatus: Rescinded November 1999 |
JESD22-C100-A | Jan 1990 |
Committee(s): JC-14.1 |
||
HIGH TEMPERATURE STORAGE LIFE |
JESD22-A103E.01 | Jul 2021 |
The test is applicable for evaluation, screening, monitoring, and/or qualification of all solid state devices. The high temperature storage test is typically used to determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms and time-to failure distributions of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms). Thermally activated failure mechanisms are modeled using the Arrhenius Equation for acceleration. During the test, accelerated stress temperatures are used without electrical conditions applied. This test may be destructive, depending on time, temperature and packaging (if any). Committee(s): JC-14.1 Available for purchase: $55.00 Add to Cart Paying JEDEC Members may login for free access. |
||
HIGHLY ACCELERATED TEMPERATURE AND HUMIDITY STRESS TEST (HAST) |
JESD22-A110E.01 | May 2021 |
The purpose of this test method is to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs severe conditions of temperature, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. This is a minor editorial edit to JESD22A110E, July 2015 approved by the formulating committee. Committee(s): JC-14.1 Free download. Registration or login required. |
||
HYBRIDS/MCM |
JESD93A | May 2023 |
This specification establishes the general requirements for hybrid microcircuits, RF/microwave hybrid microcircuits and MCMs (hereafter referred to as devices). Detailed performance requirements for a specific device are specified in the applicable device acquisition document. In the event of a conflict between this document and the device acquisition document, the device acquisition document will take precedence. Committee(s): JC-14.3 Free download. Registration or login required. |
||
IC LATCH-UP TEST |
JESD78F.02 | Nov 2023 |
This standard establishes the procedure for testing, evaluation and classification of devices and microcircuits according to their susceptibility (sensitivity) to damage or degradation by exposure to a defined latch-up stress. This standard has been adopted by the Defense Logistics Agency (DLA) as project 5962-1880. Free download. Registration or login required. |
||
Information Requirements for the Qualification of Solid State Devices |
JESD69D | Jun 2024 |
This standard defines the requirements for the device qualification package, which the supplier provides to the customer. Free download. Registration or login required. |
||
IPC/JEDEC-9702: MONOTONIC BEND CHARACTERIZATION OF BOARD-LEVEL INTERCONNECTS (IPC/JEDEC-9702) |
JS9702 | Jun 2004 |
This publication specifies a common method of establishing the fracture resistance of board-level device interconnects to flexural loading during non-cyclic board assembly and test operations. Monotonic bend test qualification pass/fail requirements are typically specific to each device application and are outside the scope of this document. This version contains Addendum 1, May 2015, reposted 8/15/2016. Committee(s): JC-14.1 Free download. Registration or login required. |
||
IPC/JEDEC-9703: MECHANICAL SHOCK TEST GUIDELINE FOR SOLDER JOINT RELIABILITYStatus: Reaffirmed May 2014, May 2019 |
JS9703 | Mar 2009 |
This document establishes mechanical shock test guidelines for assessing solder joint reliability of Printed Circuit Board (PCB) assemblies from system to component level. Committee(s): JC-14.1 Free download. Registration or login required. |
||
IPC/JEDEC-9704A: PRINTED WIRING BOARD (PWB) STRAIN GAGE TEST GUIDELINE |
JS9704A | Jan 2012 |
This document describes specific guidelines for strain gage testing for Printed Wiring Board (PWB)assemblies. The suggested procedures enables board manufacturers to conduct required strain gage testing independently, and provides a quantitative method for measuring board flexure, and assessing risk levels. The topics covered include: Test setup and equipment; requirements; Strain measurement; Report format Free download. Registration or login required. |
||
ISOTHERMAL ELECTROMIGRATION TEST PROCEDURE:Status: Reaffirmed September 2018 |
JESD61A.01 | Oct 2007 |
This standard describes an algorithm for the execution of the isothermal test, using computer-controlled instrumentation. The primary use of this test is for the monitoring of microelectronic metallization lines at wafer level (1) in process development, to evaluate process options, (2) in manufacturing, to monitor metallization reliability and (3) to monitor/evaluate process equipment. While it is developed as a fast WLR test, it can also be an effective tool for complementing the reliability data obtained through the standard package level electromigration test. Free download. Registration or login required. |
||
Joint ESDA/JEDEC - CDM Technical User Guide |
JTR002-01-22 | Jan 2023 |
This report only covers the procedures and requirements specified in ANSI/ESDA/JEDEC JS-002. Free download. Registration or login required. |