Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # |
Date![]() |
---|---|---|
LONG-TERM STORAGE GUIDELINES FOR ELECTRONIC SOLID-STATE WAFERS, DICE, AND DEVICES |
JEP160A | Aug 2022 |
This publication examines the LTS requirements of wafers, dice, and packaged solid-state devices. The user should evaluate and choose the best practices to ensure their product will maintain as-received device integrity and minimize age- and storage-related degradation effects. Free download. Registration or login required. |
||
EXTERNAL VISUAL |
JESD22-B101D | Apr 2022 |
External visual inspection is an examination of the external surfaces, construction, marking, and workmanship of a finished package or component. External visual is a noninvasive and nondestructive test. It is functional for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
RECOMMENDED ESD-CDM TARGET LEVELS |
JEP157A | Apr 2022 |
This document was written with the intent to provide information for quality organizations in both semiconductor companies and their customers to assess and make decisions on safe ESD CDM level requirements. Free download. Registration or login required. |
||
METHOD FOR DEVELOPING ACCELERATION MODELS FOR ELECTRONIC DEVICE FAILURE MECHANISMS |
JESD91B | Mar 2022 |
The method described in this document applies to all reliability mechanisms associated with electronic devices. The purpose of this standard is to provide a reference for developing acceleration models for defect-related and wear-out mechanisms in electronic devices. Committee(s): JC-14.3 Free download. Registration or login required. |
||
TEST METHOD FOR THE MEASUREMENT OF MOISTURE DIFFUSIVITY AND WATER SOLUBILITY IN ORGANIC MATERIALS USED IN ELECTRONIC DEVICES |
JESD22-A120C | Jan 2022 |
This standard details the procedures for the measurement of characteristic bulk material properties of moisture diffusivity and water solubility in organic materials used in the packaging of electronic devices. These two material properties are important parameters for the effective reliability performance of plastic packaged surface mount devices after exposure to moisture and subjected to high temperature solder reflow. Committee(s): JC-14.1 Free download. Registration or login required. |
||
Test Procedure for the Measurement of Terrestrial Cosmic Ray Induced Destructive Effects in Power Semiconductor Devices |
JEP151A | Jan 2022 |
This test method defines the requirements and procedures for terrestrial destructive* single-event effects (SEE) for example, single-event breakdown (SEB), single-event latch-up (SEL) and single-event gate rupture (SEGR) testing . It is valid when using an accelerator, generating a nucleon beam of either; 1) Mono-energetic protons or mono-energetic neutrons of at least 150 MeV energy, or 2) Neutrons from a spallation spectrum with maximum energy of at least 150 MeV. This test method does not apply to testing that uses beams with particles heavier than protons. *This test method addresses a separate risk than does JESD89 tests for non-destructive SEE due to cosmic radiation effects on terrestrial applications.
Committee(s): JC-14.1 Free download. Registration or login required. |
||
SEMICONDUCTOR WAFER AND DIE BACKSIDE EXTERNAL VISUAL INSPECTION |
JESD22-B118A | Nov 2021 |
This inspection method is for product semiconductor wafers and dice prior to assembly. This test method defines the requirements to execute a standardized external visual inspection and is a non-invasive and nondestructive examination that can be used for qualification, quality monitoring, and lot acceptance. Committee(s): JC-14.1 Free download. Registration or login required. |
||
TEST METHOD FOR BEAM ACCELERATED SOFT ERROR RATE |
JESD89-3B | Sep 2021 |
This test is used to determine the terrestrial cosmic ray Soft Error Rate (SER) sensitivity of solid state volatile memory arrays and bistable logic elements (e.g., flip-flops) by measuring the error rate while the device is irradiated in a neutron or proton beam of known flux. The results of this accelerated test can be used to estimate the terrestrial cosmic ray induced SER for a given terrestrial cosmic ray radiation environment. This test cannot be used to project alpha-particle induced SER. Committee(s): JC-14.1 Free download. Registration or login required. |
||
GENERAL REQUIREMENTS FOR DISTRIBUTORS OF COMMERCIAL AND MILITARY SEMICONDUCTOR DEVICES |
JESD31F | Aug 2021 |
This standard identifies the general requirements for Distributors that supply Commercial and Military products. This standard applies to all discrete semiconductors, integrated circuits and Hybrids, whether packaged or in wafer/die form, manufactured by all Manufacturers. The requirements defined within this document are only applicable to products for which ownership remains with the Distributor or Manufacturer. Free download. Registration or login required. |
||
COPY-EXACT PROCESS FOR MANUFACTURING |
JEP185 | Aug 2021 |
This publication defines the requirements for Copy-Exact Process (CEP) matching, real-time process control, monitoring, and ongoing assessment of the CEP. The critical element requirements for inputs, process controls, procedures, process indicators, human factors, equipment/infrastructure and matching outputs are given. Manufacturers, suppliers and their customers may use these methods to define requirements for process transfer within the constraints of their business agreements. Committee(s): JC-14.3 Free download. Registration or login required. |
||
TEST METHOD FOR ALPHA SOURCE ACCELERATED SOFT ERROR RATE |
JESD89-2B | Jul 2021 |
This test method is offered as standardized procedure to determine the alpha particle Soft Error Rate (SER) sensitivity of solid state volatile memory arrays and bistable logic elements (e.g. flipflops) by measuring the error rate while the device is irradiated by a characterized, solid alph source. Free download. Registration or login required. |
||
TEST METHOD FOR REAL-TIME SOFT ERROR RATE |
JESD89-1B | Jul 2021 |
This test is used to determine the Soft Error Rate (SER) of solid state volatile memory arrays and bistable logic elements (e.g. flip-flops) for errors which require no more than re-reading or re-writing to correct and as used in terrestrial environments. It simulates the operating condition of the device and is used for qualification, characterization, or reliability monitoring. This test is intended for execution in ambient conditions without the artificial introduction of radiation sources. Free download. Registration or login required. |
||
METHODS FOR CALCULATING FAILURE RATES IN UNITS OF FITS |
JESD85A | Jul 2021 |
This standard establishes methods for calculating failure rates in units of FITs by using data in varying degrees of detail such that results can be obtained from almost any data set. The objective is to provide a reference to the way failure rates are calculated. Committee(s): JC-14.3 Free download. Registration or login required. |
||
HIGH TEMPERATURE STORAGE LIFE |
JESD22-A103E.01 | Jul 2021 |
The test is applicable for evaluation, screening, monitoring, and/or qualification of all solid state devices. The high temperature storage test is typically used to determine the effects of time and temperature, under storage conditions, for thermally activated failure mechanisms and time-to failure distributions of solid state electronic devices, including nonvolatile memory devices (data retention failure mechanisms). Thermally activated failure mechanisms are modeled using the Arrhenius Equation for acceleration. During the test, accelerated stress temperatures are used without electrical conditions applied. This test may be destructive, depending on time, temperature and packaging (if any). Committee(s): JC-14.1 Available for purchase: $55.00 Add to Cart Paying JEDEC Members may login for free access. |
||
HIGHLY ACCELERATED TEMPERATURE AND HUMIDITY STRESS TEST (HAST) |
JESD22-A110E.01 | May 2021 |
The purpose of this test method is to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs severe conditions of temperature, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors which pass through it. This is a minor editorial edit to JESD22A110E, July 2015 approved by the formulating committee. Committee(s): JC-14.1 Free download. Registration or login required. |
||
ACCELERATED MOISTURE RESISTANCE - UNBIASED HAST |
JESD22-A118B.01 | May 2021 |
The Unbiased HAST is performed for the purpose of evaluating the reliability of nonhermetic packaged solid-state devices in humid environments. It is a highly accelerated test which employs temperature and humidity under noncondensing conditions to accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors that pass through it. Bias is not applied in this test to ensure the failure mechanisms potentially overshadowed by bias can be uncovered (e.g., galvanic corrosion). This test is used to identify failure mechanisms internal to the package and is destructive. Committee(s): JC-14.1 Free download. Registration or login required. |
||
ELECTROSTATIC DISCHARGE (ESD) SENSITIVITY TESTING – REPORTING ESD WITHSTAND LEVELS ON DATASHEETS |
JEP178 | Apr 2021 |
This document is intended to guide device manufacturers in developing datasheets and to device customers in understanding datasheet entries. Committee(s): JC-14.3 Free download. Registration or login required. |
||
FLIP CHIP TENSILE PULL |
JESD22-B109C | Mar 2021 |
The Flip Chip Tensile Pull Test Method is performed to determine the fracture mode and strength of the solder bump interconnection between the flip chip die and the substrate. It should be used to assess the consistency of the chip join process. This test method is a destructive test. Committee(s): JC-14.1 Free download. Registration or login required. |
||
APPLICATION THERMAL DERATING METHODOLOGIES: |
JEP149.01 | Jan 2021 |
This publication applies to the application of integrated circuits and their associated packages in end use designs. It summarizes the methodology of thermal derating and the suitability of such methodologies. Free download. Registration or login required. |
||
SYSTEM LEVEL ESD: PART II: IMPLEMENTATION OF EFFECTIVE ESD ROBUST DESIGNSThis is an editorial revision, details can be found in Annex F. |
JEP162A.01 | Jan 2021 |
This document, while establishing the complex nature of System Level ESD, proposes that an efficient ESD design can only be achieved when the interaction of the various components under ESD conditions are analyzed at the system level. This objective requires an appropriate characterization of the components and a methodology to assess the entire system using simulation data. This is applicable to system failures of different categories (such as hard, soft, and electromagnetic interference (EMI)). This type of systematic approach is long overdue and represents an advanced design approach which replaces the misconception, as discussed in detail in JEP161, that a system will be sufficiently robust if all components exceed a certain ESD level. Free download. Registration or login required. |
||
STEADY-STATE TEMPERATURE-HUMIDITY BIAS LIFE TEST |
JESD22-A101D.01 | Jan 2021 |
This standard establishes a defined method and conditions for performing a temperature-humidity life test with bias applied. The test is used to evaluate the reliability of nonhermetic packaged solid state devices in humid environments. It employs high temperature and humidity conditions to accelerate the penetration of moisture through external protective material or along interfaces between the external protective coating and conductors or other features that pass through it. This revision enhances the ability to perform this test on a device which cannot be biased to achieve very low power dissipation. Free download. Registration or login required. |
||
CHARACTERIZATION OF INTERFACIAL ADHESION IN SEMICONDUCTOR PACKAGES |
JEP167A | Nov 2020 |
This document identifies methods used for the characterization of die adhesion. It gives guidance which method to apply in which phase of the product or technology life cycle. Committee(s): JC-14.1 Free download. Registration or login required. |
||
CYCLED TEMPERATURE HUMIDITY-BIAS WITH SURFACE CONDENSATION LIFE TEST |
JESD22-A100E | Nov 2020 |
The Cycled Temperature-humidity-bias Life Test is performed for the purpose of evaluating the reliability of nonhermetic packaged solid state devices in humid environments. It employs conditions of temperature cycling, humidity, and bias that accelerate the penetration of moisture through the external protective material (encapsulant or seal) or along the interface between the external protective material and the metallic conductors that pass through it. The Cycled Temperature-Humidity-Bias Life Test is typically performed on cavity packages (e.g., MQUADs, lidded ceramic pin grid arrays, etc.) as an alternative to JESD22-A101 or JESD22-A110. Free download. Registration or login required. |
||
PRECONDITIONING OF NONHERMETIC SURFACE MOUNT DEVICES PRIOR TO RELIABILITY TESTING |
JESD22-A113I | Apr 2020 |
This Test Method establishes an industry standard preconditioning flow for nonhermetic solid state SMDs (surface mount devices) that is representative of a typical industry multiple solder reflow operation. These SMDs should be subjected to the appropriate preconditioning sequence of this document by the semiconductor manufacturer prior to being submitted to specific in-house reliability testing (qualification and reliability monitoring) to evaluate long term reliability (which might be impacted by solder reflow). Committee(s): JC-14.1 Free download. Registration or login required. |
||
CUSTOMER NOTIFICATION PROCESS FOR DISASTERS |
JESD246A | Jan 2020 |
This standard establishes the requirements for timely notification to affected customers after a disaster has occurred at a supplier’s facility that will affect the committed delivery of product. This standard puts specific emphasis on notification, timing, and notification content which includes risk exposure, impact analysis, and recovery plans. This standard is applicable to suppliers of, and affected customers for, solid-state products and the constituent components used within. Committee(s): JC-14.4 Free download. Registration or login required. |
||
POWER AND TEMPERATURE CYCLING |
JESD22-A105D | Jan 2020 |
The power and temperature cycling test is performed to determine the ability of a device to withstand alternate exposures at high and low temperature extremes and simultaneously the operating biases are periodically applied and removed. It is intended to simulate worst case conditions encountered in application environments. The power and temperature cycling test is considered destructive and is only intended for device qualification. This test method applies to semiconductor devices that are subjected to temperature excursions and required to power on and off during all temperatures. Free download. Registration or login required. |
||
MARK LEGIBILITY |
JESD22-B114B | Jan 2020 |
This standard describes a nondestructive test to assess solid state device mark legibility. The specification applies only to solid state devices that contain markings, regardless of the marking method. It does not define what devices must be marked or the method in which the device is marked, i.e., ink, laser, etc. The standard is limited in scope to the legibility requirements of solid state devices, and does not replace related reference documents listed in this standard. Committee(s): JC-14.1 Free download. Registration or login required. |
||
MECHANICAL SHOCK – DEVICE AND SUBASSEMBLY |
JESD22-B110B.01 | Jun 2019 |
Device and Subassembly Mechanical Shock Test Method is intended to evaluate devices in the free state and assembled to printed wiring boards for use in electrical equipment. The method is intended to determine the compatibility of devices and subassemblies to withstand moderately severe shocks. The use of subassemblies is a means to test devices in usage conditions as assembled to printed wiring boards. Mechanical Shock due to suddenly applied forces, or abrupt change in motion produced by handling, transportation or field operation may disturb operating characteristics, particularly if the shock pulses are repetitive. This is a destructive test intended for device qualification.This document also replaces JESD22-B104. Free download. Registration or login required. |
||
SOLID STATE RELIABILITY ASSESSMENT QUALIFICATION METHODOLOGIES |
JEP143D | Jan 2019 |
The purpose of this publication is to provide an overview of some of the most commonly used systems and test methods historically performed by manufacturers to assess and qualify the reliability of solid state products. The appropriate references to existing and proposed JEDEC (or EIA) standards and publications are cited. This document is also intended to provide an educational background and overview of some of the technical and economic factors associated with assessing and qualifying microcircuit reliability. Free download. Registration or login required. |
||
GUIDELINES FOR GaAs MMIC PHEMT/MESFET AND HBT RELIABILITY ACCELERATED LIFE TESTING |
JEP118A | Dec 2018 |
These guidelines apply to GaAs Monolithic Microwave Integrated Circuits (MMICs) and their individual component building blocks, such as GaAs Metal-Semiconductor Field Effect Transistors (MESFETs), Pseudomorphic High Electron Mobility Transistors (PHEMTs), Heterojunction Bipolar Transistors (HBTs), resistors, and capacitors. While the procedure described in this document may be applied to other semiconductor technologies, especially those used in RF and microwave frequency analog applications, it is primarily intended for technologies based on GaAs and related III-V material systems (InP, AlGaAs, InGaAs, InGaP, GaN, etc). Committee(s): JC-14.7 Free download. Registration or login required. |
||
Numerical Analysis Guidelines for Microelectronics Packaging Design and Reliability |
IPC/JEDEC9301-2018 | Dec 2018 |
This document is an effort to standardize and document some of the basic tenets of a typical Finite Element Analysis (FEA) model. The intent of this document is to help educate new designers (and in some cases even experienced designers) on the basic information and best practices that should be captured and provided to technical reviewers of the results of FEA data. Committee(s): JC-14.1 Free download. Registration or login required. |
||
ELECTRICALLY ERASABLE PROGRAMMABLE ROM (EEPROM) PROGRAM/ERASE ENDURANCE AND DATA RETENTION TESTStatus: Reaffirmed October 2024 |
JESD22-A117E | Nov 2018 |
This stress test is intended to determine the ability of an EEPROM integrated circuit or an integrated circuit with an EEPROM module (such as a microprocessor) to sustain repeated data changes without failure (program/erase endurance) and to retain data for the expected life of the EEPROM (data retention). This Standard specifies the procedural requirements for performing valid endurance and retention tests based on a qualification specification. Endurance and retention qualification specifications (for cycle counts, durations, temperatures, and sample sizes) are specified in JESD47 or may be developed using knowledge-based methods as in JESD94. Free download. Registration or login required. |
||
DEVICE QUALITY PROBLEM ANALYSIS AND CORRECTIVE ACTION RESOLUTION METHODOLOGY |
JESD671D | Oct 2018 |
This standard addresses any Customer-initiated device problem analysis/corrective action request and Supplier/Authorized Distributor-identified device nonconformance to specification which may impact the Customer. This standard establishes a common set of Customer, Authorized Distributor and Supplier expectations and requirements that will help to facilitate successful problem analysis and corrective action of device problems, including administrative quality problems, which may affect the Customer. Formerly known as EIA-671 (November 1996). Became JESD671-A after revision, December 1999. Committee(s): JC-14.4 Free download. Registration or login required. |
||
MECHANICAL COMPRESSIVE STATIC STRESS TEST METHOD |
JESD22-B119 | Oct 2018 |
This test method is intended for customers to determine the ability of a device to withstand the mechanical compressive static stress generated when a heat sink is being initially attached to the device, and to help the customer generate design rules for their heat sink design and validate their thermal solution. This test method does not assess the long-term effects of static stress. Committee(s): JC-14.1 Free download. Registration or login required. |
||
FOUNDRY PROCESS QUALIFICATION GUIDELINES - FRONT END TRANSISTOR LEVEL (Wafer Fabrication Manufacturing Sites) |
JEP001-2A | Sep 2018 |
This document describes transistor-level test and data methods for the qualification of semiconductor technologies. It does not give pass or fail values or recommend specific test equipment, test structures or test algorithms. Wherever possible, it references applicable JEDEC such as JESD47 or other widely accepted standards for requirements documentation. Committee(s): JC-14.2 Free download. Registration or login required. |
||
FOUNDRY PROCESS QUALIFICATION GUIDELINES - BACKEND OF LIFE (Wafer Fabrication Manufacturing Sites) |
JEP001-1A | Sep 2018 |
This document describes backend-level test and data methods for the qualification of semiconductor technologies. It does not give pass or fail values or recommend specific test equipment, test structures or test algorithms. Wherever possible, it references applicable JEDEC such as JESD47 or other widely accepted standards for requirements documentation. Committee(s): JC-14.2 Free download. Registration or login required. |
||
BOARD LEVEL CYCLIC BEND TEST METHOD FOR INTERCONNECT RELIABILITY CHARACTERIZATION OF SMT ICs FOR HANDHELD ELECTRONIC PRODUCTS |
JESD22-B113B | Aug 2018 |
The Board Level Cyclic Bend Test Method is intended to evaluate and compare the performance of surface mount electronic components in an accelerated test environment for handheld electronic products applications. The purpose is to standardize the test methodology to provide a reproducible performance assessment of surface mounted components while duplicating the failure modes normally observed during product level test. This is not a component qualification test and is not meant to replace any product level test that may be needed to qualify a specific product and assembly. Free download. Registration or login required. |
||
POTENTIAL FAILURE MODE AND EFFECTS ANALYSIS (FMEA) |
JEP131C | Aug 2018 |
This publication applies to electronic components and subassemblies product and or process development, manufacturing processes and the associated performance requirements in customer applications. These areas should include, but are not limited to: package design, chip design, process development, assembly, fabrication, manufacturing, materials, quality, service, and suppliers, as well as the process requirements needed for the next assembly. Committee(s): JC-14.4 Free download. Registration or login required. |
||
RECOMMENDED ESD TARGET LEVELS FOR HBM/MM QUALIFICATIONStatus: Reaffirmed January 2024 |
JEP155B | Jul 2018 |
This document was written with the intent to provide information for quality organizations in both semiconductor companies and their customers to assess and make decisions on safe ESD level requirements. It will be shown through this document why realistic modifying of the ESD target levels for component level ESD is not only essential but is also urgent. The document is organized in different sections to give as many technical details as possible to support the purpose given in the abstract. In June 2009 the formulating committee approved the addition of the ESDA logo on the covers of this document. Please see Annex C for revision history. Reaffirmed: January 2024 Free download. Registration or login required. |
||
CLASSIFICATION OF PASSIVE AND SOLID STATE DEVICES FOR ASSEMBLY PROCESSES |
J-STD-075A | May 2018 |
This is a Joint Standard between ECIA, IPC, and JEDEC. The purpose of this specification is to establish an agreed to set of worst case solder assembly process conditions to which devices are evaluated. The generated PSL rating will convey the conditions to which a device can be safely attached to FR4 type or ceramic laminates using SMT reflow and solder wave/fountain soldering processes. It is important for device manufacturers (hereafter referred to as “suppliers”), users, and (PWB) assemblers to be highly familiar with this standard’s information and processes to insure optimal device quality and reliability. THIS DOCUMENT IS NOT AVAILABLE FOR FREE DOWNLOAD. However, this document is available to the JEDEC formulating Committee members on the JC-14 Resources tab on the Members' website. The lead organization is ECIA. Committee(s): JC-14 |