Global Standards for the Microelectronics Industry
Standards & Documents Search
Title | Document # | Date |
---|---|---|
PROCUREMENT STANDARD FOR KNOWN GOOD DIE (KGD) |
JESD49B.01 | Oct 2023 |
This standard facilitates the procurement and use of semiconductor die products provided in bare or bumped die form, and provides requirements and guidance to die suppliers as to the levels of as-delivered performance, quality and reliability expected. It also reflects the special needs of die product customers in terms of design and application data. Committee(s): JC-13 Free download. Registration or login required. |
||
MEASUREMENT AND REPORTING OF ALPHA PARTICLE AND TERRESTRIAL COSMIC RAY INDUCED SOFT ERRORS IN SEMICONDUCTOR DEVICES |
JESD89B | Sep 2021 |
This specification defines the standard requirements and procedures for terrestrial soft-error-rate (SER) testing of integrated circuits and reporting of results. Both real-time (unaccelerated) and accelerated testing procedures are described. At terrestrial, Earth-based altitudes, the predominant sources of radiation include both cosmic-ray radiation and alpha-particle radiation from radioisotopic impurities in the package and chip materials. An overall assessment of a deviceís SER is complete, only when an unaccelerated test is done, or accelerated SER data for the alpha-particle component and the cosmic-radiation component has been obtained. Free download. Registration or login required. |
||
GUIDELINE FOR OBTAINING AND ACCEPTING MATERIAL FOR USE IN HYBRID/MCM PRODUCTSStatus: Reaffirmed May 2023 |
JEP142 | May 2023 |
This document provides guidance regarding design considerations, material assessment techniques, and recommendations for material acceptance prior to use in Hybrid/MCM Products. As part of the risk assessment process, both technical requirements and cost should be carefully considered with regard to testing/evaluating the elements of a hybrid microcircuit or Multi-chip Module (MCM) prior to material release for assembly. The intent of this document is to highlight various options that are available to the Hybrid / MCM manufacturer and provide associated guidance, not to impose a specific set of tests. Free download. Registration or login required. |
||
TEST STANDARD FOR THE MEASUREMENT OF PROTON RADIATION SINGLE EVENT EFFECTS IN ELECTRONIC DEVICES |
JESD234 | Oct 2013 |
This test standard defines the requirements and procedures for 40 to 500 MeV proton irradiation of electronic devices for Single Event Effects (SEE), and reporting the results. Protons are capable of causing SEE by both direct and indirect ionization, however, in this energy range, indirect ionization will be the dominant cause of SEE [1-3]. Indirect ionization is produced from secondary particles of proton/material nuclear reactions, where the material is Si or any other element present in the semiconductor. Direct proton ionization is thought to be a minor source of SEE, at these energies. This energy range is also selected to coincide with the commonly used proton facilities, and result in the fewest energy dependent issues during test. Free download. Registration or login required. |
||
GENERAL REQUIREMENTS FOR DISTRIBUTORS OF COMMERCIAL AND MILITARY SEMICONDUCTOR DEVICES |
JESD31F | Aug 2021 |
This standard identifies the general requirements for Distributors that supply Commercial and Military products. This standard applies to all discrete semiconductors, integrated circuits and Hybrids, whether packaged or in wafer/die form, manufactured by all Manufacturers. The requirements defined within this document are only applicable to products for which ownership remains with the Distributor or Manufacturer. Free download. Registration or login required. |
||
STANDARD TEST METHOD UTILIZING X-RAY FLUORESCENCE (XRF) FOR ANALYZING COMPONENT FINISHES AND SOLDER ALLOYS TO DETERMINE TIN (Sn) - LEAD (Pb) CONTENTReaffirmed June 2023 |
JESD213A | Apr 2017 |
This document is intended to be used by Original Component Manufacturers who deliver electronic components and Original Equipment Manufacturers who are the platform system integrators. It is intended to be applied prior to delivery by the OCMs and may be used by OEM system engineers and procuring activities as well as U.S Government Department of Defense system engineers, procuring activities and repair centers. This Standard establishes the instrumentation, techniques, criteria, and methods to be utilized to quantify the amount of Lead (Pb) in Tin-Lead (Sn/Pb) alloys and electroplated finishes containing at least 3 weight percent (wt%) Lead (Pb) using X-Ray Fluorescence (XRF) equipment. Reaffirmed June 2023
Committee(s): JC-13 Free download. Registration or login required. |
||
ALPHA RADIATION MEASUREMENT IN ELECTRONIC MATERIALS |
JESD221 | May 2011 |
This standard applies generally to gas proportional instruments and the use thereof in measuring materials with an alpha emissivity of less than 10 a·khr-1·cm-2. The primary focus will be on materials used in semiconductor fabrication. The purpose of this document is to specify the recommended method for measuring alpha emissivity in materials utilized in the manufacturing of semiconductors. The method specifically applies to gas proportional instruments and designates recommended instrument settings. In addition, the method discusses operation of ionization counters. The document also recommends methods for determining sample size and for evaluating instrument background accurately. Free download. Registration or login required. |
||
CERAMIC PACKAGE SPECIFICATION FOR MICROELECTRONIC PACKAGES - SUPERSEDED BY JESD9B, May 2011.Status: Rescinded, May 2011 |
JESD27 | Aug 1993 |
The intent of this standard is to be a guide in the manufacture and procurement of ceramic packages, especially for the hybrid industry. Manufacturers or ceramic packages and procuring activities for these packages will now be able to use this document as the means for agreement in the imposition of minimum requirements in qualification, screening, and quality conformance. Free download. Registration or login required. |
||
TEST PROCEDURE FOR THE MANAGEMENT OF SINGLE-EVENT EFFECTS IN SEMICONDUCTOR DEVICES FROM HEAVY ION IRRADIATION: |
JESD57A | Nov 2017 |
This test method defines requirements and procedures for ground simulation and single event effects (SEE) and implementation of the method in testing integrated circuits. This standard is valid when using a cyclotron or Van de Graaff accelerator. Microcircuits under test must be delidded. The ions used at the facilities have an atomic number Z > 2. It does not apply to SEE testing that uses protons, neutrons, or other lighter particles. This standard is designed to eliminate any misunderstanding between users of the method and test facilities, to minimize delays, and to promote standardization of testing and test data. Committee(s): JC-13.4 Free download. Registration or login required. |
||
JEDEC REQUIREMENTS FOR CLASS B MICROCIRCUITSStatus: Rescinded, May 2006 |
JEP101-C | Nov 1995 |
Committee(s): JC-13.2 Free download. Registration or login required. |